Supporting Information

Two 2D multiresponsive luminescence coordination polymers for selective sensing of Fe³⁺, Cr^{VI}-anions and TNP in aqueous medium

Ai-Mei Zhou, Han Wei, Wei Gao*, Jie-Ping Liu and Xiu-Mei Zhang*

 Table S1 Selected bond lengths (Å) and angles (°) for 1 and 2.

CP 1			
Zn1-O4A	1.920(4)	Zn1-O7	2.237(5)
Zn1-O1	1.931(4)	Zn1-O6	2.258(4)
Zn1-N2B	2.045(4)		
O4A-Zn1-O1	127.43(16)	N2B-Zn1-O7	90.37(18)
O4A-Zn1-N2B	128.81(17)	O4A-Zn1-O6	90.13(17)
O1-Zn1-N2B	103.75(17)	O1-Zn1-O6	90.35(17)
O4A-Zn1-O7	91.41(18)	N2B-Zn1-O6	88.93(17)
O1-Zn1-O7	88.44(18)	O7-Zn1-O6	178.42(15)
Symmetry codes: A	A -x+1, y+1/2, -z+3/2;	B -x+2, -y+1, -z+2.	
CP 2			
Cd1-O6	2.249(12)	Cd1-O1B	2.474(9)
Cd1-O7	2.273(12)	Cd1-O3	2.667(9)
Cd1-O4	2.302(9)	N2-Cd1C	2.318(11)
Cd1-N2A	2.318(11)	O2-Cd1D	2.377(10)
Cd1-O2B	2.377(10)		
O6-Cd1-O7	171.9(4)	O7-Cd1-O4	88.7(4)
O6-Cd1-O4	97.8(4)	O6-Cd1-N2A	83.4(4)
O7-Cd1-N2A	88.5(5)	O4-Cd1-N2A	138.1(3)

O6-Cd1-O2B	92.3(4)	O7-Cd1-O2B	93.5(4)	
O4-Cd1-O2B	81.6(3)	N2A-Cd1-O2B	140.3(4)	
O6-Cd1-O1B	92.4(4)	O7-Cd1-O1B	86.4(4)	
O4-Cd1-O1B	134.8(3)	N2A-Cd1-O1B	86.6(3)	
O2B-Cd1-O1B	54.0(3)	O6-Cd1-O3	90.9(4)	
O7-Cd1-O3	89.1(4)	O4-Cd1-O3	52.5(3)	
N2A-Cd1-O3	85.7(3)	O2B-Cd1-O3	134.0(3)	
O1B-Cd1-O3	171.2(3)			
Symmetry codes: A -x+1, y+1/2, -z+3/2; B -x+2, -y+1, -z+2.				

Table S2 Hydrogen bond lengths (Å) and angles (°) for CP 1^a .

D	A[Transformation]	d(D-H)	d(H···A)	$d(D \cdots A)$	<(DHA)
06	O3[-x+1, -y+1, -z+1]	0.850	1.940	2.788	176(2)
06	O2[-x+1, -y+2, -z+1]	0.850	1.923	2.749	164(2)
07	O5[-x+1, -y+2, -z]	0.850	1.948	2.780	166(3)
O7	08	0.850	2.353	2.989	153(3)
08	O6[x-1, y, z]	0.850	2.095	2.931	168(2)

^aD, donor; A, acceptor.

Table S3 Hydrogen bond lengths (Å) and angles (°) for CP 2^a .

	, , ,		0		
D	A[Transformation]	d(D-H)	$d(H^{\dots}A)$	$d(D \cdots A)$	<(DHA)
06	O3[-x+1, -y+1, -z+2]	0.850	1.869	2.718	177.30
06	09	0.850	2.097	2.943	173.19
07	O1[-x, -y+1, -z+2]	0.850	1.924	2.751	163.95
08	O11[x, y+1, z]	0.850	2.008	2.858	178.51
09	O10[x+1, y+1, z]	0.850	2.039	2.839	156.41
09	O11[x, y+1, z]	0.850	1.871	2.666	155.05
O10	O2	0.850	2.057	2.907	179.78
O10	O5 [-x, -y+1, -z+1]	0.850	2.062	2.911	179.52
011	O8[-x+1, -y+1, -z+1]	0.850	2.323	3.127	157.85
011	O10[-x+1, -y, -z+1]	0.850	1.981	2.779	155.89

^a D, donor; A, acceptor.

Fig. S1 The schematic view of the hcb topology of the 2D layer.

Fig. S2 The 3D packing of the layers in 1.

Fig. S3 The 3D packing of the layers in 2.

Fig. S4 TGA curves of 1 and 2.

Fig. S5 The solid-state emission spectra of free H₂L, 1 and 2 at room temperature.

Fig. S6 The powder X-ray diffraction patterns of simulated 1 and 2, as-synthesized 1 and 2 and CPs 1 and 2 immersed in 1.0 mM water solutions of Fe^{3+} , CrO_4^{2-} , $Cr_2O_7^{2-}$ and TNP.

Fig. S7 The UV-Vis absorption spectra of 1 and 2 immersed in different metal ions aqueous solution and the corresponding excitation for 1 and 2.

Fig. S8 The UV-Vis absorption spectra of 1 and 2 immersed in different anions aqueous solution and the corresponding excitation for 1 and 2.

Fig. S9 The UV-Vis absorption spectra of 1 and 2 immersed in NB, 1,3-DNB and TNP aqueous solution, and the corresponding excitation for 1 and 2.