Supplementary Information

Visible-light CO₂ photoreduction of polyoxometalate-based hybrids with different cobalt

clusters

Wei Yao, Chao Qin,* Na Xu, Jie Zhou, Chunyi Sun, Li Liu* and Zhongmin Su

Key Laboratory of Polyoxometalate Science, Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Battery, Northeast Normal University, Changchun, Jilin, 130024, P. R. China

Fig. S1 PXRD patterns of 1 with simulated (black line), as-synthesized (red line) and after photocatalytic reaction (blue line).

Fig. S2 PXRD patterns of 2 with simulated (black line), as-synthesized (red line) and after photocatalytic reaction (blue line).

Fig. S3 IR spectra of 1 with as-synthesized (black line) and after photocatalytic reaction (red line).

Fig. S4 IR spectra of 2 with as-synthesized (black line) and after photocatalytic reaction (red line).

Fig. S5 TG and DTG curves of compound 1.

Fig. S6 TG and DTG curves of compound 2.

Fig. S7 UV-Vis spectra of compounds 1 and 2.

Fig. S8 (a) Gas chromatogram and (b) mass spectra analyses of the carbon source of the evolved CO in the photocatalytic reduction of ${}^{13}CO_2$ by compound 1.

Fig. S9 (a) Gas chromatogram and (b) mass spectra analyses of the carbon source of the evolved CO in the photocatalytic reduction of ${}^{13}CO_2$ by compound 2.

Fig. S10 Emission specta of $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (1.0 × 10⁻⁶ M) in CH₃CN in the absence and presence of **1** (0.03 μ M–0.15 μ M); excitation wavelength: 452 nm.

Fig. S11 Emission spectra of $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ (1.0 × 10⁻⁶ M) in CH₃CN in the absence and presence of 2 (0.03 μ M–0.15 μ M); excitation wavelength: 452 nm.

Fig. S12 Transient PL decay of [Ru(bpy)₃]Cl₂·6H₂O in CH₃CN in the absence and presence of 0.5 mg 1 and 0.5 mg 2.

Fig. S13 Transient photocurrent responses of compounds 1 and 2 under visible-light irradiation ($\lambda \ge 420$ nm).

Fig. S14 Tauc plot of $(\alpha hv)^{1/2}$ versus hv derived from UV-vis spectrum in panel for band gap estimation. The horizontal (x) axis is the baseline, the pink line of **1** and the blue line of **2** are the tangent of the curve.

Fig. S15 VB XPS spectrum for compound 1.

Fig. S17 Schematic energy-level diagram showing electron transfer from $[Ru(bpy)_3]Cl_2$ to compound 1.

Fig. S18 Schematic energy-level diagram showing electron transfer from $[Ru(bpy)_3]Cl_2$ to compound 2.

Fig. S19 Comparison of the yields (CO and H_2) of compounds 1 and 2 using quartz tube and pyrex tube, respectively.

	1	2			
Empirical formula	$C_8 H_{20} C I_{1.33} C o_{2.67} N_{12} O_{44} Si W_{12}$	$C_{12}H_{36}CI_{2}Co_{3}N_{18}O_{49}SiW_{12}$			
Formula weight	3415.25	3698.57			
Temperature/K	296.15	296.15			
Crystal system	cubic	triclinic			
Space group	14-3d	<i>P</i> -1			
a/Å	25.1342(4)	12.7994(10)			
b/Å	25.1342(4)	13.1541(11)			
c/Å	25.1342(4)	18.1961(15)			
α/°	90	92.8590(10)			
<i>6</i> /°	90	90.2200(10)			
γ/°	90	95.7360(10)			
Volume/ų	15878.0(8)	3044.3(4)			
Ζ	12	2			
D _{calcd} (g⋅cm ⁻³)	4.301	4.035			
μ/mm ⁻¹	26.971	23.585			
F(000)	18008.0	3286.0			
2θ Range /°	3.97-50.076	3.116-49.998			
Reflections collected	43958	17621			
Independent reflections	2346	10690			
Good on <i>F</i> ²	1.017	0.980			
R ₁ [I>=2σ (I)] ^a	0.0235	0.0406			
wR ₂ [I>=2σ (I)] ^b	0.0547	0.0851			
R1ª (all data)	0.0261	0.0597			
wR_2^b (all data)	0.0563	0.0940			
R _{int}	0.0806	0.0365			
${}^{a}R_{1} = \Sigma F_{0} - F_{c} /\Sigma F_{0} . {}^{b}wR_{2} = [\Sigma w (F_{0}^{2} - F_{c}^{2})^{2}/\Sigma w (F_{0}^{2})^{2}]^{1/2}.$					

Table S1 Crystal data and structure refinements for 1 and 2.

Table S2 Comparison of the photocatalytic performance of compounds 1 and 2 with that of g-C₃N₄ and its derivatives

					J. 4	
catalyst	CO	H ₂	CO	H ₂	Time	Ref
	(µmol g⁻¹)	(µmol g⁻¹)	(µmol g ⁻¹ h ⁻¹)	(µmol g⁻¹ h⁻¹)		
1	15705	14523	5235	4841	3h	This work
2	18501	18199	6167	6066	3h	This work
Mo/C ₃ N ₄	105	224	18	37	6h	1
Co ₄ @g-C ₃ N ₄	896	53.2	-	_	10	2
rGO/Ag ₂ S/CN	178.05	-	-	-	8h	3

R. Y. Zhang, P. H. Li, F. W, L. Q. Ye, A. Gaurc, Z. Huang, Z. Y. Zhao, Y. Bai, Y. Zhou. Applied Catalysis B: Environmental, 2019, 250, 273–279.
J. Zhou, W. C. Chen, C. Y. Sun, L. Han, C. Qin, M. M. Chen, X. L. Wang, E. B. Wang, Z. M. Su. ACS Appl. Mater. Interfaces, 2017, 9, 11689–11695.
X. Li, D. Shen, C. Liu, J. Z. Li, Y. J. Zhou a, X. H. Song, P. W. Huo, H. Q. Wang, Y. S. Yan. Journal of Colloid and Interface Science, 2019, 554, 468–478.

Table S3 Comparison of the photocatalytic activities of 1 and 2 with the reported heterogeneous materials working in pure CO₂ at 1.0 atm.

Catalyst	[Catalys t]	Light sourc e (nm)	Photosensitizer	Solvent	Produc ts	TON _C	Tim e	Referen ce
1	0.3µM	420	[Ru(bpy)₃]Cl₂·6 H₂O	TEOA/MeCN/H ₂ O	CO, H ₂	52.3 5	3h	This work
2	0.3µM	420	[Ru(bpy)₃]Cl₂·6 H₂O	TEOA/MeCN/H ₂ O	CO, H ₂	61.6 7	3h	This work
ReP:CoP	0.05µM	400	/	1,3-dimethyl-2-phenyl-1,3- dihydrobenzimidazole/DMF/H ₂ O	CO, H ₂	70	10h	4
Co-ZIF-9	0.8 μM	420	[Ru(bpy) ₃] ²⁺	TEOA/MeCN/H ₂ O	CO, H ₂	89.6	0.5h	5
[Co ^{II} (TPA)CI]CI	0.005 mM	460	lr(ppy)₃	TEA/CH₃CN	CO, H ₂	900	70h	6
CoCl₂·6H₂O	0.17 mM	420	[Ru(bpy) ₃] ²⁺	EMIM][BF ₄]/H ₂ O/TEOA	CO, H ₂	35	2h	7
[Co(bpy) ₃] ²⁺	0.2 mM	420	CdS	[EMIM][BF ₄]/TEOA/H ₂ O	CO, H ₂	44	2h	8
[Co(L-N ₅)] ²⁺	0.05 mM	460	lr(ppy)₃	CH ₃ CN/ TEA	со	270	22h	9
Co-(bpy) ₃ Cl ₂ /g- CN	1 µM	420	/	MeCN/TEOA/CoCl ₂ /bpy	CO, H ₂	4.3	2h	10

References

4. J. S. Lee, D. I. Won, W. J. Jung, H. J. Son, C. Pac, S. O. Kang, Angew. Chem. Int. Ed., 2017, 56, 976 –980.

5. S. B. Wang, W. S. Yao, J. L. Lin, Z. X. Ding, X. C. Wang, Angew. Chem. Int. Ed., 2014, 53, 1034 –1038.

6. S. L. F. Chan, T. L. Lam, C. Yang, S. C. Yan, N. M. Cheng, Chem. Commun., 2015, 51, 7799.

8. J. L. Lin, Y. D. Hou, Y. Zheng, X. C. Wang, Chem. Asian J., 2014, 9, 2468.

10. J. L. Lin, Z. M. Pan, X. C. Wang, ACS Sustainable Chem. Eng., 2014, 2, 353–358.

^{7.} J. L. Lin, Z. X. Ding, Y. D. Hou, X. C. Wang, Scientific Reports., 2013, 3, 1056.

^{9.} L. J. Chen, Z. G. Guo, X. G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabéhère-Mallart, K. C. Lau, T. C. Lau, M. Robert, J. Am. Chem. Soc., 2015, 137, 10918–10921.

Table S4 Comparison of the cost of compounds 1 and 2 with other materials

Entry	material	price	material	Price	material	Price	Ref.
		(yuan/g)		(yuan/g)		(yuan/g)	
1, 2	CoCl₂·6H₂O	209/500	$H_4SiW_{12}O_{40}\cdot 2H_2O$	74/25	1,2,4-triazole	202/25	This work
Co ₄ @g-C ₃ N ₄	g-C ₃ N ₄	990/0.2	H ₃ O ₄₀ PW ₁₂	90/25	Co(NO ₃) ₂	368/500	2
POM-Pt	aluminum	69/500	2-aminoterephthalic	295/25	H ₂ PtCl ₆	1429/10 mL	11
NPs@NH ₂ -silica.	chloride		acid				
	hexahydrate						
	H ₃ PW ₁₂ O ₄₀	90/25					
TiO ₂ -POM	TiO ₂ powders	89/100	H ₃ O ₄₀ PW ₁₂	90/25	H ₄ SiW ₁₂ O ₄₀ ·2H ₂ O	74/25	12
	H ₃ PMo ₁₂ O ₄₀	79/25					

11. W. W. Guo, H. J. Lv, Z. Y. Chen, K. P. Sullivan, S. M. Lauinger, Y. N. Chi, J. M. Sumliner, T. Q. Lian, C. L. Hill. J. Mater. Chem. A, 2016, 4, 5952.

12. H. Zheng, C. H. Wang, X. T. Zhang, Y. Y. Li, H. Ma, Y. C. Liu. Applied Catalysis B: Environmental, 2018, 234, 79–89.

Table S5 Fitted lifetimes of the fluorescence decay profiles of photosensitizer in the absence and presence of 0.5 mg 1 and 0.5 mg 2.

Photocatalyst	A ₁	$ au_1$
$[Ru(bpy)_3]Cl_2 \cdot 6H_2O$	2315.95	1.21
Compound 1	2075.58	1.08
Compound 2	1714.93	1.01

Table S6 Optical band gap E_{VB} and E_{CB} of catalysts 1 and 2.

Compounds	$E_{\rm g}$ (eV)	$E_{\rm VB}$ (eV)	$E_{\rm CB}$ (eV)
Compound 1	2.90	1.84	-1.06
Compound 2	2.64	1.45	-1.19

Table S7 Comparison of the energy of Co-POMs and [Ru(bpy)₃]Cl₂.

~	
Sample E_{VB} E_{HOMO} E_{CB} E_{LUMO}	
$[Ru(bpy)_3]Cl_2$ 1.24 -5.68 -1.25 -3.19	
Compound 1 1.84 -6.28 -1.06 -3.38	
Compound 2 1.45 -5.89 -1.19 -3.25	