Supporting Information

Structural, thermal and topological characterization of coordination networks containing flexible aminocarboxylate ligands with a central biphenylene scaffold

Davide Balestri,a,c Patrick Scilabra,b Claudia Carraro,a Andrea Delledonne,a Alessia Bacchi,a,c Paolo Pio Mazzeo,a,c Lucia Carlucci and Paolo Pelagatti∗,a

aDepartment of Chemical Sciences, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.

bDepartment of Chemistry, Materials and Chemistry Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.

cBiopharmanet-TEC, Università degli studi di Parma, via Parco Area delle Scienze 27/A, 43124 Parma, Italy.

d Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133, Milan, Italy

Table of Contents

1. Optical Microscope Images of MOF crystals .. S2
2. Additional X-Ray Figures .. S4
3. Thermal Analysis ... S11
4. FTIR (ATR) spectra ... S13
5. Additonal topological Data .. S15

S1
1. Optical Microscope Images of MOF crystals

Figure S 1 Crystals of PUMflex1-Zn

Figure S 2 Crystals of PUMflex1.1-Zn
Figure S 3 Crystals of PUMflex2-Cd

Figure S 4 Crystals of PUMflex1-Zr
2. Additional X-Ray Figures

Figure S 5 Asymmetric unit of PUM\textit{flex}1-Zn. All non-hydrogen atoms shown as ellipsoids at the 50% probability level. H atoms (isotropically refined) are reported in ball-and-stick style for the sake of clarity.

Figure S 6 Asymmetric unit of PUM\textit{flex}1.1-Zn. All non-hydrogen atoms shown as ellipsoids at the 50% probability level. H atoms (isotropically refined) are reported in ball-and-stick style for the sake of clarity.
Figure S 7 Asymmetric unit of PUM/plex1-Zr. All non-hydrogen atoms shown as ellipsoids at the 50% probability level. H atoms (isotropically refined) are reported in ball-and-stick style for the sake of clarity.

Figure S 8 Asymmetric unit of PUM/plex2-Cd. All non-hydrogen atoms shown as ellipsoids at the 50% probability level. H atoms (isotropically refined) are reported in ball-and-stick style for the sake of clarity.
Figure S 9 Top view of the 2D plane for PUM/flex1-Zn

Figure S 10 View of rectangular channels in PUM-/flex1-Zn along the crystallographic axis b.
Figure S 11 Top view of the 2D plane in PUM/flex1.1-Zn

Figure S 12 Nets interpenetration in PUM/flex1.1-Zn
Figure S 13 View of channels of PUMflex1-Zn along crystallographic axis a: light blue color for Zn-coordinated DMF molecules, dark blue color for weakly bound DMF molecules.

Figure S 14 View of channels of PUMflex1.1-Zn along crystallographic axis a: light blue color for Zn-coordinated DMF molecules, dark blue color for weakly bound DMF molecules.
Figure S 15 Additional view of PUMflex1-Zn asymmetric unit: disordered part of ligand L1 and DMF molecules ligand are highlighted

Figure S 16 Additional view of PUMflex1.1-Zn asymmetric unit: disordered part of ligand L1 and DMF molecules ligand are highlighted
Figure S 17 PUMflex2-Cd metal coordination environment: disorder of coordinated DMF molecules are highlighted.
3. Thermal Analysis

Figure S 18 TGA trace of PUM/flex1-Zn

Figure S 19 TGA trace of PUM/flex1.1-Zn
Figure S 20 TGA trace of PUMflex1-Zr

Figure S 21 TGA trace of PUMflex2-Cd
4. FTIR (ATR) spectra

Figure S 22 FTIR spectra of native PUMflex1-Zn crystals.

Figure S 23 FTIR spectra of PUMflex1-Zr prior thermal treatment.
Figure S 24 FTIR spectra of PUM/lex1-Zr after thermal treatment.

Figure S 25 FTIR spectra of native PUM/lex2-Cd crystals.
5. Additional topological Data

Table S1: List of structures showing 1D chains of 2,8C1 topological type.

<table>
<thead>
<tr>
<th>Refcode</th>
<th>Metal</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>WURXAJ</td>
<td>Y S.Mishra et al., Chem.Commun. 2010, 46, 3756.</td>
</tr>
<tr>
<td>16</td>
<td>EJOZUA</td>
<td>Nd Lu Pan et al., J.Mol.Struct. 2016, 1117, 57</td>
</tr>
<tr>
<td>17</td>
<td>EJUBAO</td>
<td>Sm Lu Pan et al., J.Mol.Struct. 2016, 1117, 57</td>
</tr>
</tbody>
</table>