Supporting Information

Li₂Na₂TiP₂O₉: an ordered Na₄TiP₂O₉-Type Crystal with Ion-

Exchange Properties

Meihong Duan⁺⁺ and Rukang Li⁺*

[†]Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^{*} Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

CONTENTS

Single Crystal and powder X-ray Diffraction	S2
UV-Vis diffuser reflectance	S2
Thermal Analysis	S2
Ion exchange experiment	S3
Figure S1. (a) DSC curve for LNTP; (b) PXRD pattern for residuals DSC and calculated PXRD pat	tern for:
LNTP.	S4
Figure S2. EDS result for the ion-exchange experiment of Ag+ in LNTP.	S5
Figure S3. EDS result for the ion-exchange experiment of Cd ²⁺ in LNTP.	S6
Figure S4. EDS result for the ion-exchange experiment of Pb ²⁺ in LNTP.	S7
Figure S5. EDS result for the ion-exchange experiment of Sr ²⁺ in LNTP.	S8
Figure S6. EDS result for the ion-exchange experiment of Zn ²⁺ in LNTP.	S9
Table S1. Crystal data and structure refinement for LNTP.	S10
Table S2. Atomic coordinates and equivalent isotropic displacement parameters for LNTP.	S11
Table S3. Anisotropic displacement parameters, in Å ² .	S12
Table S4. Selected geometric information for LNTP.	S13
References	

Single Crystal and Powder X-ray Diffraction

A colorless crystal with dimensions of $0.06 \times 0.03 \times 0.01 \text{mm}^3$ was selected for single-crystal X-ray diffraction. The diffraction data were collected on a Rigaku AFC10 single-crystal diffractometer equipped with graphite-monochromatic Mo K α radiation (λ = 0.71073 Å) at 153.15 K and a Saturn CCD detector. CrystalClear program was used to record the intensity data and to conduct cell refinement and data reduction. The crystal structure was solved by the direct method with grogram SHELXS-97¹ and refined by full matrix least squares on F2 by SHELXL-97 programs. The structure was verified using the ADDSYM algorithm from the program PLATON, and no higher symmetry was found. The diffraction data of powder samples was collected by powder X-ray diffraction measurement on a Bruker D8 ADVANCE X-ray diffractometer using Cu K α radiation (λ = 1.5418Å) at room temperature in the angular range of 2 ϑ = 5-80° with a scan step width of 0.02° and a scan rate of 0.1.

UV-Vis diffuser reflectance

The reflection spectrum of LNTP crystal was performed with a Perkin-Elmer Lambda 900 UV–vis-NIR spectrometer in the range of 200–1100 nm.

Thermal Analysis

The differential scanning calorimetric (DSC) analysis (Fig.2) was performed on a NETZSCH STA–409CD apparatus using Al_2O_3 as reference material under N_2 flow with a sample heating rate of 10.0k/min from 50°C to 1050°C. The crystal powders has melt at 850°C, after the melting, the sample was checked by powder XRD.

Ion exchange

The crystals of Li₂Na₂TiP₂O₉ (~10.0 mg) were added into 0.2 mol/L water solution (10 mL) of AgNO₃, BaCl₂, CdCl₂, Pb(NO₃)₂, SrCl₂, ZnCl₂ and CoCl₂, respectively. The mixture kept shaking for 24 h at RT and was then isolated by filtration and washed several times with water and acetone then dried in air. The ground powder of Li₂Na₂TiP₂O₉ (~100 mg) were added in 0.2 mol/L water solution (20 mL) of CdCl₂, Pb(NO₃)₂, SrCl₂, ZnCl₂ and CoCl₂ , respectively. The mixture was kept under magnetic stirring for 24 h at RT. The solution was filtered and washed as previously mentioned.

Figure S1. (a) DSC curve for LNTP; (b) PXRD pattern for residuals DSC and calculated PXRD pattern for LNTP.

Figure S2. EDS result for the ion-exchange experiment of Ag+ in LNTP.

Figure S3. EDS result for the ion-exchange experiment of Cd^{2+} in LNTP.

Figure S5. EDS result for the ion-exchange experiment of Sr^{2+} in LNTP.

Figure S6. EDS result for the ion-exchange experiment of Zn^{2+} in LNTP.

Formula	$Li_2Na_2TiP_2O_9$
formula mass(amu)	313.70
crystal system	othorhombic
space group	Pbcm (57)
<i>a</i> (Å)	7.2930(15)
b(Å)	7.0892(14)
<i>c</i> (Å)	14.699(3)
α	90
β	90
γ	90
<i>V</i> (ų)	760.0(3)
Ζ	4
<i>Т</i> (К)	153.15
ho(calcd)(g/cm ³)	2.742
λ (Å)	0.71073
F(000)	608
heta(deg)	2.7715-27.4584
Cryst size (mm ³)	0.06×0.03×0.01
μ (mm ⁻¹)	1.689
R(F) ^a	0.0835
$R_{\rm W}(F_{\rm o}^2)^{b}$	0.1739

Table S1. Crystal data and structure refinement for LNTP.

 ${}^{a}R(\mathsf{F}) = \sum | | F_{\mathsf{o}} | - | F_{\mathsf{c}} | | / \sum | F_{\mathsf{o}} | \text{ for } F_{\mathsf{o}}^{2} > 2\sigma(F_{\mathsf{o}}^{2}).$

 ${}^{b}R_{w}(F_{o}{}^{2}) = \{ (\sum [w(F_{o}{}^{2}-F_{c}{}^{2})^{2}] / \sum wF_{o}{}^{4} \}^{1/2} \text{ for all data.} \}$

 $w^{-1} = \sigma^2(F_0^2) + (zP)^2$, where $P = (M_{ax}(F_0^2, 0) + 2F_c^2)/3$.

Atom	Wyck.	Site	x/a	y/b	z/c
Ti1	4d	m	0.0169(3)	0.7875(3)	1/4
P1	8e	1	0.2693(3)	0.5096(3)	0.38778(14)
Na1	4c	2	0.0171(6)	1/4	1/2
Na2	4d	m	0.5449(7)	0.7338(6)	1/4
05	4d	m	0.1088(10)	1.0138(10)	1/4
03	8e	1	0.4679(7)	0.4978(7)	0.3603(4)
02	8e	1	0.2250(7)	0.5102(8)	0.4888(4)
04	8e	1	0.1872(8)	0.6970(7)	0.3465(4)
01	8e	1	0.1682(8)	0.3354(7)	0.3453(4)
Li1	8e	1	0.288(2)	0.547(3)	0.6089(11)

 Table S2. Atomic coordinates and equivalent isotropic displacement parameters for

LNTP.

Table 62 Anisotronia displacement perspectors	m Å2
Table 53. Anisotropic displacement parameters, I	n A-

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Ti1	0.0139(10)	0.0091(9)	0.0122(10)	0.0018(8)	0.00000	0.00000
P1	0.0138(10)	0.0065(9)	0.0125(11)	-0.0007(8)	-0.0008(9)	0.0006(8)
Na1	0.016(2)	0.010(2)	0.020(2)	0.00000	0.00000	0.0023(16)
Na2	0.029(3)	0.011(2)	0.019(2)	-0.0047(19)	0.00000	0.00000
05	0.015(4)	0.008(4)	0.018(4)	0.001(3)	0.00000	0.00000
03	0.014(3)	0.013(3)	0.015(3)	0.002(2)	-0.001(2)	0.002(2)
02	0.015(3)	0.010(3)	0.016(3)	0.000(2)	-0.001(2)	0.003(2)
04	0.021(3)	0.006(3)	0.022(3)	0.003(2)	-0.006(3)	-0.002(2)
01	0.022(3)	0.011(3)	0.015(3)	-0.005(2)	-0.006(3)	0.000(2)
Li1	0.027(8)	0.052(11)	0.021(8)	0.013(8)	-0.008(7)	-0.018(8)

Atoms 1,2	d 1,2 [Å]	Atoms 1,2	d 1,2 [Å]
Ti1—Na1 ⁱ	3.6927(8)	Na2—O5 ^x	18.0225(81)
Ti1—Na1 ⁱⁱ	3.6927(8)	Na2—O3 ^{xiii}	11.3758(66)
Ti1—Na2 ⁱⁱⁱ	3.4633(56)	Na2—O3 ^v	13.1962(65)
Ti1—05	1.7387(74)	Na2—O3	2.3965(63)
Ti1—O5 ^{iv}	17.9060(74)	Na2—O3 ^{xiv}	12.3567(66)
Ti1—O4 ^v	13.3539(65)	Na2—O4 ^v	13.5368(65)
Ti1—O4	1.9915(60)	Na2—O4	2.9808(74)
Ti1—O1 ^{vi}	9.2159(61)	Na2—O1 ^{xiv}	10.6543(65)
Ti1—O1 ^{vii}	9.8633(60)	Na2—O1 ^{xiii}	10.3227(65)
Ti1—Li1 ^{viii}	13.1709(188)	Na2—Li1 ^{xv}	3.1224(185)
Ti1—Li1 ^{ix}	17.0104(210)	Na2—Li1 ^{xvi}	3.1224(185)
P1—Na1	3.0807(34)	O5—Ti1 ^{vii}	11.8139(60)
P1—Na1 ⁱ	3.1604(36)	O5—Na2 ^{xiv}	15.5542(79)
P1—Na2 ^x	18.0882(50)	O5—Li1 ^{ix}	15.6193(218)
P1—Na2	3.2661(43)	05—Li1 ^{viii}	12.2811(187)
P1-03	1.5060(56)	O3—Na2 ^x	17.1132(69)
P1-02	1.5196(62)	O3—Li1 ^{xvi}	1.8641(158)
P1-04	1.5785(57)	O2—Na1 ⁱ	2.4565(62)
P1-01	1.5680(57)	O2—Li1	1.8427(172)
Na1—P1 ^{xi}	10.6931(28)	O4—Na1 ⁱ	2.7298(63)
Na1—O2 ⁱ	2.4565(62)	04—Li1 ^{viii}	12.9493(199)
Na1—O2 ^{xi}	9.414(6)	O1—Ti1 ^{iv}	14.4966(60)
Na1—O2 ^{xii}	7.5713(61)	O1—Na2 ^x	17.3530(71)
Na1—O2	2.3934(61)	Li1—Ti1 ^{xvii}	21.7070(207)
Na1—O4 ^{xii}	6.1255(58)	Li1—Na1 ⁱ	3.0959(170)
Na1—O4 ⁱ	2.7298(63)	Li1—Na2 ^{xvii}	22.1020(206)

 Table S4.
 Selected geometric information for LNTP

Na1—O1 ^{xi}	10.5669(61)	Li1—Na2 ^{xvi}	3.1224(185)
Na1—01	2.5984(61)	Li1—O5 ^{xvii}	23.2278(218)
Na1—Li1 ⁱ	3.0959(170)	Li1—O3 ^{xvi}	1.8641(158)
Na1—Li1 ^{xii}	9.4044(165)	Li1—O4 ^{viii}	14.5916(203)
Na2—P1 ^{xiii}	10.9135(37)		

Atoms 1,2,3	Angle 1,2,3 [°]	Atoms 1,2,3	Angle 1,2,3 [°]
Na1 ⁱⁱ —Ti1—Na1 ⁱ	168.700(4)	O1 ^{xi} —Na1—Li1 ⁱ	101.327(306)
Na2 ^{III} —Ti1—Na1 ^{II}	85.719(11)	O1—Na1—Li1 ^{xii}	142.744(162)
Na2 ⁱⁱⁱ —Ti1—Na1 ⁱ	85.719(11)	O1—Na1—Li1 ⁱ	75.168(329)
O5 ^{iv} —Ti1—Na1 ⁱⁱ	61.866(3)	Li1 ⁱ —Na1—Li1 ^{xii}	138.343(316)
O5—Ti1—Na1 ⁱ	95.297(6)	O5 ^x —Na2—P1 ^{xiii}	112.780(11)
O5—Ti1—Na1 ⁱⁱ	95.297(6)	05 ^x —Na2—O4	108.444(102)
O5 ^{iv} —Ti1—Na1 ⁱ	110.205(3)	05 ^x —Na2—O4 ^v	115.278(23)
O5 ^{iv} —Ti1—Na2 ⁱⁱⁱ	86.391(13)	O5 ^x —Na2—Li1 ^{xvi}	67.553(368)
O5−Ti1−Na2 ⁱⁱⁱ	118.985(268)	O5 ^x —Na2—Li1 ^{xv}	22.545(339)
05—Ti1—05 ^{iv}	145.717(21)	O3 ^{xiv} —Na2—P1 ^{xiii}	115.460(29)
05—Ti1—O4	93.259(146)	O3 ^{xiii} —Na2—P1 ^{xiii}	7.375(30)
05—Ti1—O4 ^v	90.486(22)	O3—Na2—P1 ^{xiii}	69.430(138)
05—Ti1—01 ^{vii}	111.714(30)	O3 ^v —Na2—P1 ^{xiii}	35.948(27)
05—Ti1—01 ^{vi}	71.711(32)	O3 ^v —Na2—O5 ^x	107.563(23)
O5 ^{iv} —Ti1—Li1 ^{viii}	156.586(83)	O3 ^{xiv} —Na2—O5 ^x	37.679(24)
05—Ti1—Li1 ^{viii}	55.913(88)	O3 ^{xiii} —Na2—O5 ^x	109.538(26)
05—Ti1—Li1 ^{ix}	35.066(74)	O3—Na2—O5 ^x	73.27(12)
O5 ^{iv} —Ti1—Li1 ^{ix}	171.951(68)	O3 ^v —Na2—O3	39.741(138)
O4—Ti1—Na1 ⁱⁱ	136.675(169)	O3—Na2—O3 ^{xiii}	73.854(139)
O4 ^v —Ti1—Na1 ⁱ	9.289(25)	O3 ^v —Na2—O3 ^{xiii}	42.683(39)
O4—Ti1—Na1 ⁱ	46.362(168)	O3 ^v —Na2—O3 ^{xiv}	133.585(37)
O4 ^v —Ti1—Na1 ⁱⁱ	172.960(25)	O3 ^{xiii} —Na2—O3 ^{xiv}	108.685(39)

O4 ^v —Ti1—Na2 ⁱⁱⁱ	95.000(25)	O3—Na2—O3 ^{xiv}	109.013(136)
O4—Ti1—Na2 ⁱⁱⁱ	125.764(168)	O3 ^{xiii} —Na2—O4	99.047(115)
04—Ti1—05 ^{iv}	88.595(146)	O3 ^{xiii} —Na2—O4 ^v	48.974(39)
04 ^v —Ti1—05 ^{iv}	111.158(23)	03 ^v —Na2—O4	58.673(115)
04—Ti1—O4 ^v	38.573(170)	O3—Na2—O4	53.977(167)
O4 ^v —Ti1—Li1 ^{viii}	48.450(75)	O3 ^{xiv} —Na2—O4 ^v	144.012(36)
04—Ti1—Li1 ^{viii}	79.285(173)	O3—Na2—O4 ^v	43.752(139)
O4 ^v —Ti1—Li1 ^{ix}	75.462(59)	O3 ^v —Na2—O4 ^v	10.612(36)
O4—Ti1—Li1 ^{ix}	99.439(157)	O3 ^{xiv} —Na2—O4	141.766(114)
O1 ^{vii} —Ti1—Na1 ⁱ	149.107(34)	03—Na2—01 ^{xiv}	113.03(14)
O1 ^{vi} —Ti1—Na1 ⁱⁱ	166.854(36)	O3 ^v —Na2—O1 ^{xiv}	141.633(40)
O1 ^{vii} —Ti1—Na1 ⁱⁱ	24.829(34)	O3 ^{xiii} —Na2—O1 ^{xiii}	11.894(43)
O1 ^{vi} —Ti1—Na1 ⁱ	23.659(37)	O3 ^{xiv} —Na2—O1 ^{xiii}	119.979(41)
O1 ^{vi} —Ti1—Na2 ⁱⁱⁱ	98.679(36)	O3—Na2—O1 ^{xiii}	74.707(141)
O1 ^{vii} —Ti1—Na2 ⁱⁱⁱ	93.554(34)	O3 ^{xiii} —Na2—O1 ^{xiv}	117.293(42)
01 ^{vii} —Ti1—05 ^{iv}	39.083(31)	O3 ^v —Na2—O1 ^{xiii}	38.389(41)
01 ^{vi} —Ti1—05 ^{iv}	130.506(33)	O3 ^{xiv} —Na2—O1 ^{xiv}	9.016(40)
O1 ^{vii} —Ti1—O4 ^v	148.252(42)	O3—Na2—Li1 ^{xvi}	36.581(358)
01 ^{vi} —Ti1—04	48.892(173)	O3 ^v —Na2—Li1 ^{xv}	126.445(298)
O1 ^{vi} —Ti1—O4 ^v	19.701(44)	O3—Na2—Li1 ^{xv}	95.495(347)
O1 ^{vii} —Ti1—O4	114.70(17)	O3 ^{xiv} —Na2—Li1 ^{xvi}	90.116(299)
01 ^{vii} —Ti1—O1 ^{vi}	163.499(49)	O3 ^v —Na2—Li1 ^{xvi}	43.739(306)
O1 ^{vi} —Ti1—Li1 ^{ix}	56.498(67)	O3 ^{xiv} —Na2—Li1 ^{xv}	15.752(308)
01 ^{vii} —Ti1—Li1 ^{ix}	135.345(68)	O3 ^{xiii} —Na2—Li1 ^{xvi}	49.599(289)
O1 ^{vii} —Ti1—Li1 ^{viii}	163.165(82)	O3 ^{xiii} —Na2—Li1 ^{xv}	113.547(301)
O1 ^{vi} —Ti1—Li1 ^{viii}	31.154(82)	O4—Na2—P1 ^{xiii}	91.689(113)
Li1 ^{ix} —Ti1—Na1 ⁱⁱ	111.570(56)	O4 ^v —Na2—P1 ^{xiii}	41.735(27)
Li1 ^{viii} —Ti1—Na1 ⁱ	47.582(71)	O4 ^v —Na2—O4	50.418(115)
Li1 ^{ix} —Ti1—Na1 ⁱ	75.545(55)	O4—Na2—Li1 ^{xv}	127.003(301)
Li1 ^{viii} —Ti1—Na1 ⁱⁱ	138.545(72)	O4 ^v —Na2—Li1 ^{xvi}	53.933(303)

Li1 ^{viii} —Ti1—Na2 ⁱⁱⁱ	84.647(64)	O4 ^v —Na2—Li1 ^{xv}	135.610(299)
Li1 ^{ix} —Ti1—Na2 ⁱⁱⁱ	88.486(50)	O4—Na2—Li1 ^{xvi}	88.263(295)
Li1 ^{viii} —Ti1—Li1 ^{ix}	28.074(106)	O1 ^{xiv} —Na2—P1 ^{xiii}	124.200(33)
Na1—P1—Na1 ⁱ	69.396(45)	O1 ^{xiii} —Na2—P1 ^{xiii}	7.847(34)
Na1—P1—Na2 ^x	100.159(41)	O1 ^{xiii} —Na2—O5 ^x	120.448(29)
Na1 ⁱ —P1—Na2	117.900(65)	O1 ^{xiv} —Na2—O5 ^x	39.904(29)
Na1—P1—Na2	171.938(77)	O1 ^{xiv} —Na2—O4	136.976(116)
Na2 ^x —P1—Na1 ⁱ	168.202(45)	O1 ^{xiii} —Na2—O4	90.453(116)
Na2 ^x —P1—Na2	72.220(36)	O1 ^{xiv} —Na2—O4 ^v	151.723(40)
O3—P1—Na1 ⁱ	143.666(230)	O1 ^{xiii} —Na2—O4 ^v	42.178(41)
O3—P1—Na1	133.207(229)	O1 ^{xiii} —Na2—O1 ^{xiv}	128.342(44)
O3—P1—Na2	43.018(209)	O1 ^{xiv} —Na2—Li1 ^{xvi}	97.906(299)
O3—P1—Na2 ^x	47.809(213)	O1 ^{xiii} —Na2—Li1 ^{xvi}	56.886(291)
03-P1-02	117.821(324)	O1 ^{xiii} —Na2—Li1 ^{xv}	125.437(312)
O3-P1-O4	107.967(313)	O1 ^{xiv} —Na2—Li1 ^{xv}	17.538(309)
03-P1-01	107.559(316)	Li1 ^{xv} —Na2—P1 ^{xiii}	119.204(304)
O2—P1—Na1 ⁱ	49.306(220)	Li1 ^{xvi} —Na2—P1 ^{xiii}	49.213(291)
O2—P1—Na1	49.575(221)	Li1 ^{xv} —Na2—Li1 ^{xvi}	83.248(459)
O2—P1—Na2	137.338(239)	Ti1—05—Ti1 ^{vii}	42.064(12)
O2—P1—Na2 ^x	128.147(229)	Ti1—O5—Na2 ^{xiv}	74.627(11)
02—P1—04	107.014(326)	Ti1 ^{vii} —O5—Na2 ^{xiv}	45.591(1)
02-P1-01	106.939(326)	Ti1 ^{vii} —05—Li1 ^{viii}	158.389(85)
O4—P1—Na1	118.825(217)	Ti1—05—Li1 ^{viii}	117.354(95)
O4—P1—Na1 ⁱ	59.741(205)	Ti1—O5—Li1 ^{ix}	141.268(80)
O4—P1—Na2	65.513(208)	Ti1 ^{vii} —O5—Li1 ^{ix}	156.957(72)
O4—P1—Na2 ^x	124.815(206)	Li1 ^{viii} —O5—Na2 ^{xiv}	149.357(79)
O1—P1—Na1	57.452(204)	Li1 ^{ix} —O5—Na2 ^{xiv}	144.006(66)
O1—P1—Na1 ⁱ	108.770(219)	Li1 ^{viii} —05—Li1 ^{ix}	31.439(111)
O1—P1—Na2 ^x	59.822(205)	P1—O3—Na2 ^x	128.453(225)
O1—P1—Na2	115.196(222)	P1—O3—Na2	111.595(287)

S16

01—P1—O4	109.355(289)	P1—O3—Li1 ^{xvi}	149.631(569)
P1—Na1—P1 ^{xi}	105.45(4)	Na2—O3—Na2 [×]	92.212(124)
P1—Na1—Li1 ^{xii}	121.191(110)	Li1 ^{xvi} —O3—Na2 ^x	64.328(534)
P1 ^{xi} —Na1—Li1 ^{xii}	49.673(100)	Li1 ^{xvi} —O3—Na2	93.409(596)
P1 ^{xi} —Na1—Li1 ⁱ	93.477(314)	P1—O2—Na1 ⁱ	102.723(278)
P1—Na1—Li1 ⁱ	82.794(322)	P1—O2—Na1	101.521(280)
O2 ^{xi} —Na1—P1	101.383(51)	P1-02-Li1	152.067(643)
O2 ^{xii} —Na1—P1 ^{xi}	50.445(46)	Na1—O2—Na1 ⁱ	94.210(196)
O2—Na1—P1 ^{xi}	78.083(139)	Li1—O2—Na1 ⁱ	90.976(566)
O2 ^{xi} —Na1—P1 ^{xi}	4.687(37)	Li1—O2—Na1	101.605(593)
O2 ⁱ —Na1—P1	92.958(134)	Ti1—O4—Na1 ⁱ	101.769(229)
O2 ⁱ —Na1—P1 ^{xi}	56.955(132)	Ti1—O4—Na2	100.292(218)
O2 ^{xii} —Na1—P1	122.282(58)	Ti1—O4—Li1 ^{viii}	92.023(173)
O2—Na1—P1	28.903(136)	P1-04-Ti1	141.396(345)
O2 ^{xi} —Na1—O2 ⁱ	54.235(135)	P1—O4—Na1 ⁱ	90.295(245)
O2 ^{xi} —Na1—O2 ^{xii}	54.520(57)	P1—O4—Na2	85.677(238)
O2 ^{xii} —Na1—O2 ⁱ	104.415(140)	P1—O4—Li1 ^{viii}	119.072(229)
O2—Na1—O2 ^{xii}	97.249(146)	Na1 ⁱ —O4—Na2	149.197(227)
02—Na1—O2 ⁱ	85.790(184)	Li1 ^{viii} —O4—Na1 ⁱ	40.646(123)
02—Na1—O2 ^{xi}	74.486(142)	Li1 ^{viii} —O4—Na2	117.626(139)
O2 ^{xi} —Na1—O4 ⁱ	32.766(125)	Ti1 ^{iv} —O1—Na1	108.122(131)
O2 ^{xii} —Na1—O4 ^{xii}	17.129(69)	Ti1 ^{iv} —O1—Na2 ^x	39.726(14)
02—Na1—O4 ⁱ	107.250(174)	P1—O1—Ti1 ^{iv}	154.320(223)
O2 ⁱ —Na1—O4 ⁱ	57.116(172)	P1—O1—Na1	91.973(249)
O2 ^{xi} —Na1—O4 ^{xii}	70.759(64)	P1—O1—Na2 ^x	115.698(214)
O2—Na1—O4 ^{xii}	109.123(147)	Na1—O1—Na2 ^x	122.500(138)
O2 ⁱ —Na1—O4 ^{xii}	116.605(141)	Ti1 ^{xvii} —Li1—Na1	136.055(371)
O2 ^{xii} —Na1—O4 ⁱ	50.095(131)	Ti1 ^{xvii} —Li1—Na2 ^{xvi}	108.797(399)
O2 ^{xii} —Na1—O1 ^{xi}	42.017(55)	Ti1 ^{xvii} —Li1—Na2 ^{xvii}	10.082(9)
O2 ^{xii} —Na1—O1	143.351(135)	Na1 ⁱ —Li1—Ti1 ^{xvii}	74.621(360)

O2 ⁱ —Na1—O1 ^{xi}	64.866(136)	Na1 ⁱ —Li1—Na1	67.396(423)
O2 ^{xi} —Na1—O1 ^{xi}	12.647(47)	Na1 ⁱ —Li1—Na2 ^{xvi}	156.973(602)
02 ⁱ —Na1—O1	101.667(178)	Na1 ⁱ —Li1—Na2 ^{xvii}	67.810(338)
02 ^{xi} —Na1—O1	130.141(132)	Na2 ^{xvi} —Li1—Na1	98.571(418)
O2—Na1—O1 ^{xi}	80.850(142)	Na2 ^{xvii} —Li1—Na1	126.291(370)
O2—Na1—O1	59.441(179)	Na2 ^{xvi} —Li1—Na2 ^{xvii}	111.930(385)
O2 ^{xi} —Na1—Li1 ⁱ	90.676(322)	O5 ^{xvii} —Li1—Ti1 ^{xvii}	2.150(4)
O2—Na1—Li1 ⁱ	93.525(345)	O5 ^{xvii} —Li1—Na1	134.398(370)
O2 ⁱ —Na1—Li1 ⁱ	36.522(329)	O5 ^{xvii} —Li1—Na1 ⁱ	72.501(359)
O2 ^{xii} —Na1—Li1 ^{xii}	1.273(109)	O5 ^{xvii} —Li1—Na2 ^{xvii}	9.052(8)
O2—Na1—Li1 ^{xii}	96.023(177)	O5 ^{xvii} —Li1—Na2 ^{xvi}	110.880(398)
O2 ^{xi} —Na1—Li1 ^{xii}	53.696(107)	O3 ^{xvi} —Li1—Ti1 ^{xvii}	98.330(627)
O2 ⁱ —Na1—Li1 ^{xii}	104.013(169)	O3 ^{xvi} —Li1—Na1	125.493(676)
O2 ^{xii} —Na1—Li1 ⁱ	138.404(304)	O3 ^{xvi} —Li1—Na1 ⁱ	153.017(749)
O4 ^{xii} —Na1—P1	129.296(64)	O3 ^{xvi} —Li1—Na2 ^{xvii}	107.802(591)
O4 ⁱ —Na1—P1	133.330(127)	O3 ^{xvi} —Li1—Na2 ^{xvi}	50.009(437)
O4 ^{xii} —Na1—P1 ^{xi}	66.443(55)	O3 ^{xvi} —Li1—O5 ^{xvii}	100.062(625)
O4 ⁱ —Na1—P1 ^{xi}	29.365(121)	O3 ^{xvi} —Li1—O4 ^{viii}	103.306(593)
O4 ^{xii} —Na1—O4 ⁱ	59.635(133)	O2—Li1—Ti1 ^{xvii}	121.136(618)
O4 ⁱ —Na1—Li1 ^{xii}	50.123(157)	O2—Li1—Na1	45.249(416)
04 ^{xii} —Na1—Li1 ^{xii}	18.252(114)	O2—Li1—Na1 ⁱ	52.502(429)
O4 ⁱ —Na1—Li1 ⁱ	88.343(313)	O2—Li1—Na2 ^{xvi}	130.046(754)
O4 ^{xii} —Na1—Li1 ⁱ	144.682(314)	O2—Li1—Na2 ^{xvii}	117.513(615)
O1—Na1—P1 ^{xi}	134.587(129)	O2—Li1—O5 ^{xvii}	119.064(620)
O1—Na1—P1	30.575(131)	02—Li1—03 ^{xvi}	116.529(840)
O1 ^{xi} —Na1—P1 ^{xi}	8.432(33)	02—Li1—O4 ^{viii}	125.440(616)
O1 ^{xi} —Na1—P1	109.230(49)	O4 ^{viii} —Li1—Ti1 ^{xvii}	11.488(34)
O1 ^{xi} —Na1—O4 ⁱ	28.766(125)	O4 ^{viii} —Li1—Na1	129.430(381)
01—Na1—O4 ⁱ	157.328(179)	O4 ^{viii} —Li1—Na1 ⁱ	74.949(338)
O1—Na1—O4 ^{xii}	139.667(136)	O4 ^{viii} —Li1—Na2 ^{xvii}	8.100(34)

O1 ^{xi} —Na1—O4 ^{xii}	58.118(63)	O4 ^{viii} —Li1—Na2 ^{xvi}	103.849(387)
01 ^{xi} —Na1—O1	139.440(133)	04 ^{viii} —Li1—05 ^{xvii}	12.035(37)
O1 ^{xi} —Na1—Li1 ^{xii}	41.241(104)		
(i) -x, 1-y, 1-z; (ii) -x, 1-y, -0.5+z; (iii) -1+x, y, z; (iv) x, -0.5-y, -z;			
(v) x, y, 1.5-z; (vi) x, 1.5-y, 0.5+z; (vii) x, 0.5-y, -z; (viii) -x, 1.5+y, 1.5-z;			
(ix) -x, 2.5+y, z; (x) 1+x, -0.5-y, -z; (xi) -x, 0.5+y, 1.5-z; (xii) x, 0.5-y, 0.5+z;			
(xiii) 1+x, 1.5-y, 0.5+z; (xiv) 1+x, 0.5-y, -z; (xv) 1-x, 1-y, -0.5+z; (xvi) 1-x, 1-y, 1-z;			
(xvii) -x, 2.5+y, 1+z.			

REFERENCES

(1) Sheldrick, G., SHELXS-97, Program for crystal structure solution; University of Göttingen: Göttingen, Germany, 1997.