Supporting Information

Li$_2$Na$_2$TiP$_2$O$_9$: an ordered Na$_4$TiP$_2$O$_9$-Type Crystal with Ion-Exchange Properties

Meihong Duan†,‡ and Rukang Li†,*
†Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
$‡$ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

CONTENTS

Single Crystal and powder X-ray Diffraction S2
UV-Vis diffuser reflectance S2
Thermal Analysis S2
Ion exchange experiment S3

Figure S1. (a) DSC curve for LNTP; (b) PXRD pattern for residuals DSC and calculated PXRD pattern for LNTP. S4

Figure S2. EDS result for the ion-exchange experiment of Ag$^+$ in LNTP. S5
Figure S3. EDS result for the ion-exchange experiment of Cd$^{2+}$ in LNTP. S6
Figure S4. EDS result for the ion-exchange experiment of Pb$^{2+}$ in LNTP. S7
Figure S5. EDS result for the ion-exchange experiment of Sr$^{2+}$ in LNTP. S8
Figure S6. EDS result for the ion-exchange experiment of Zn$^{2+}$ in LNTP. S9

Table S1. Crystal data and structure refinement for LNTP. S10
Table S2. Atomic coordinates and equivalent isotropic displacement parameters for LNTP. S11
Table S3. Anisotropic displacement parameters, in Å2. S12
Table S4. Selected geometric information for LNTP. S13

References
Single Crystal and Powder X-ray Diffraction

A colorless crystal with dimensions of 0.06×0.03×0.01 mm3 was selected for single-crystal X-ray diffraction. The diffraction data were collected on a Rigaku AFC10 single-crystal diffractometer equipped with graphite-monochromatic Mo Kα radiation ($\lambda = 0.71073$ Å) at 153.15 K and a Saturn CCD detector. CrystalClear program was used to record the intensity data and to conduct cell refinement and data reduction. The crystal structure was solved by the direct method with program SHELXS-971 and refined by full matrix least squares on F2 by SHELXL-97 programs. The structure was verified using the ADDSYM algorithm from the program PLATON, and no higher symmetry was found. The diffraction data of powder samples was collected by powder X-ray diffraction measurement on a Bruker D8 ADVANCE X-ray diffractometer using Cu Kα radiation ($\lambda = 1.5418$ Å) at room temperature in the angular range of 2θ = 5-80$^\circ$ with a scan step width of 0.02$^\circ$ and a scan rate of 0.1.

UV-Vis diffuser reflectance

The reflection spectrum of LNTP crystal was performed with a Perkin-Elmer Lambda 900 UV–vis-NIR spectrometer in the range of 200–1100 nm.

Thermal Analysis

The differential scanning calorimetric (DSC) analysis (Fig.2) was performed on a NETZSCH STA–409CD apparatus using Al$_2$O$_3$ as reference material under N$_2$ flow with a sample heating rate of 10.0 k/min from 50$^\circ$C to 1050$^\circ$C. The crystal powders has melt at 850$^\circ$C, after the melting, the sample was checked by powder XRD.
Ion exchange

The crystals of Li$_2$Na$_2$TiP$_2$O$_9$ (≈10.0 mg) were added into 0.2 mol/L water solution (10 mL) of AgNO$_3$, BaCl$_2$, CdCl$_2$, Pb(NO$_3$)$_2$, SrCl$_2$, ZnCl$_2$ and CoCl$_2$, respectively. The mixture kept shaking for 24 h at RT and was then isolated by filtration and washed several times with water and acetone then dried in air. The ground powder of Li$_2$Na$_2$TiP$_2$O$_9$ (≈100 mg) were added in 0.2 mol/L water solution (20 mL) of CdCl$_2$, Pb(NO$_3$)$_2$, SrCl$_2$, ZnCl$_2$ and CoCl$_2$, respectively. The mixture was kept under magnetic stirring for 24 h at RT. The solution was filtered and washed as previously mentioned.
Figure S1. (a) DSC curve for LNTP; (b) PXRD pattern for residuals DSC and calculated PXRD pattern for LNTP.
Figure S2. EDS result for the ion-exchange experiment of Ag⁺ in LNTP.
Figure S3. EDS result for the ion-exchange experiment of Cd$^{2+}$ in LNTP.
Figure S4. EDS result for the ion-exchange experiment of Pb$^{2+}$ in LNTP.
Figure S5. EDS result for the ion-exchange experiment of Sr$^{2+}$ in LNTP.
Figure S6. EDS result for the ion-exchange experiment of Zn$^{2+}$ in LNTP.
Table S1. Crystal data and structure refinement for LNTP.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula mass (amu)</td>
<td>313.70</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pbcm (57)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.2930(15)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>7.0892(14)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.699(3)</td>
</tr>
<tr>
<td>α</td>
<td>90</td>
</tr>
<tr>
<td>β</td>
<td>90</td>
</tr>
<tr>
<td>γ</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>760.0(3)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>T (K)</td>
<td>153.15</td>
</tr>
<tr>
<td>ρ (calcd) (g/cm³)</td>
<td>2.742</td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>F(000)</td>
<td>608</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>2.7715-27.4584</td>
</tr>
<tr>
<td>Cryst size (mm³)</td>
<td>0.06×0.03×0.01</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>1.689</td>
</tr>
<tr>
<td>R(F)</td>
<td>0.0835</td>
</tr>
<tr>
<td>Rₒ(Fo²)</td>
<td>0.1739</td>
</tr>
</tbody>
</table>

R(F) = Σ | | Fₒ | - | F_c | | / ∑ | Fₒ | for Fₒ² > 2σ(Fₒ²).

Rₒ(Fo²) = (| Σ [w(Fₒ²-F_c²)]² / Σ wFₒ⁴ |)¹/² for all data.

w⁻¹ = σ²(Fₒ²) + (zP)², where P = (Max(Fₒ², 0) + 2 F_c²)/3.
Table S2. Atomic coordinates and equivalent isotropic displacement parameters for LNTP.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Wyck.</th>
<th>Site</th>
<th>x/a</th>
<th>y/b</th>
<th>z/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti1</td>
<td>4d</td>
<td>..m</td>
<td>0.0169(3)</td>
<td>0.7875(3)</td>
<td>1/4</td>
</tr>
<tr>
<td>P1</td>
<td>8e</td>
<td>1</td>
<td>0.2693(3)</td>
<td>0.5096(3)</td>
<td>0.38778(14)</td>
</tr>
<tr>
<td>Na1</td>
<td>4c</td>
<td>2..</td>
<td>0.0171(6)</td>
<td>1/4</td>
<td>1/2</td>
</tr>
<tr>
<td>Na2</td>
<td>4d</td>
<td>..m</td>
<td>0.5449(7)</td>
<td>0.7338(6)</td>
<td>1/4</td>
</tr>
<tr>
<td>O5</td>
<td>4d</td>
<td>..m</td>
<td>0.1088(10)</td>
<td>1.0138(10)</td>
<td>1/4</td>
</tr>
<tr>
<td>O3</td>
<td>8e</td>
<td>1</td>
<td>0.4679(7)</td>
<td>0.4978(7)</td>
<td>0.3603(4)</td>
</tr>
<tr>
<td>O2</td>
<td>8e</td>
<td>1</td>
<td>0.2250(7)</td>
<td>0.5102(8)</td>
<td>0.4888(4)</td>
</tr>
<tr>
<td>O4</td>
<td>8e</td>
<td>1</td>
<td>0.1872(8)</td>
<td>0.6970(7)</td>
<td>0.3465(4)</td>
</tr>
<tr>
<td>O1</td>
<td>8e</td>
<td>1</td>
<td>0.1682(8)</td>
<td>0.3354(7)</td>
<td>0.3453(4)</td>
</tr>
<tr>
<td>Li1</td>
<td>8e</td>
<td>1</td>
<td>0.288(2)</td>
<td>0.547(3)</td>
<td>0.6089(11)</td>
</tr>
</tbody>
</table>
Table S3. Anisotropic displacement parameters, in Å²

<table>
<thead>
<tr>
<th>Atom</th>
<th>U$_{11}$</th>
<th>U$_{22}$</th>
<th>U$_{33}$</th>
<th>U$_{12}$</th>
<th>U$_{13}$</th>
<th>U$_{23}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti1</td>
<td>0.0139(10)</td>
<td>0.0091(9)</td>
<td>0.0122(10)</td>
<td>0.0018(8)</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>P1</td>
<td>0.0138(10)</td>
<td>0.0065(9)</td>
<td>0.0125(11)</td>
<td>-0.0007(8)</td>
<td>-0.0008(9)</td>
<td>0.0006(8)</td>
</tr>
<tr>
<td>Na1</td>
<td>0.016(2)</td>
<td>0.010(2)</td>
<td>0.020(2)</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.0023(16)</td>
</tr>
<tr>
<td>Na2</td>
<td>0.029(3)</td>
<td>0.011(2)</td>
<td>0.019(2)</td>
<td>-0.0047(19)</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>O5</td>
<td>0.015(4)</td>
<td>0.008(4)</td>
<td>0.018(4)</td>
<td>0.001(3)</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>O3</td>
<td>0.014(3)</td>
<td>0.013(3)</td>
<td>0.015(3)</td>
<td>0.002(2)</td>
<td>-0.001(2)</td>
<td>0.002(2)</td>
</tr>
<tr>
<td>O2</td>
<td>0.015(3)</td>
<td>0.010(3)</td>
<td>0.016(3)</td>
<td>0.000(2)</td>
<td>-0.001(2)</td>
<td>0.003(2)</td>
</tr>
<tr>
<td>O4</td>
<td>0.021(3)</td>
<td>0.006(3)</td>
<td>0.022(3)</td>
<td>0.003(2)</td>
<td>-0.006(3)</td>
<td>-0.002(2)</td>
</tr>
<tr>
<td>O1</td>
<td>0.022(3)</td>
<td>0.011(3)</td>
<td>0.015(3)</td>
<td>-0.005(2)</td>
<td>-0.006(3)</td>
<td>0.000(2)</td>
</tr>
<tr>
<td>Li1</td>
<td>0.027(8)</td>
<td>0.052(11)</td>
<td>0.021(8)</td>
<td>0.013(8)</td>
<td>-0.008(7)</td>
<td>-0.018(8)</td>
</tr>
<tr>
<td>Atoms 1,2</td>
<td>d 1,2 [Å]</td>
<td>Atoms 1,2</td>
<td>d 1,2 [Å]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—Na1i</td>
<td>3.6927(8)</td>
<td>Na2—O5i</td>
<td>18.0225(81)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—Na1ii</td>
<td>3.6927(8)</td>
<td>Na2—O3xiii</td>
<td>11.3758(66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—Na2iii</td>
<td>3.4633(56)</td>
<td>Na2—O3v</td>
<td>13.1962(65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—O5</td>
<td>1.7387(74)</td>
<td>Na2—O3</td>
<td>2.3965(63)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—O5iv</td>
<td>17.9060(74)</td>
<td>Na2—O3xiv</td>
<td>12.3567(66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—O4v</td>
<td>13.3539(65)</td>
<td>Na2—O4v</td>
<td>13.5368(65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—O4</td>
<td>1.9915(60)</td>
<td>Na2—O4</td>
<td>2.9808(74)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—O1vi</td>
<td>9.2159(61)</td>
<td>Na2—O1xiv</td>
<td>10.6543(65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—O1vii</td>
<td>9.8633(60)</td>
<td>Na2—O1xiii</td>
<td>10.3227(65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—Li1viii</td>
<td>13.1709(188)</td>
<td>Na2—Li1xv</td>
<td>3.1224(185)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti1—Li1ix</td>
<td>17.0104(210)</td>
<td>Na2—Li1xvi</td>
<td>3.1224(185)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—Na1</td>
<td>3.0807(34)</td>
<td>O5—Ti1vii</td>
<td>11.8139(60)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—Na1i</td>
<td>3.1604(36)</td>
<td>O5—Na2xiv</td>
<td>15.5542(79)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—Na2v</td>
<td>18.0882(50)</td>
<td>O5—Li1ix</td>
<td>15.6193(218)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—Na2</td>
<td>3.2661(43)</td>
<td>O5—Li1viii</td>
<td>12.2811(187)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—O3</td>
<td>1.5060(56)</td>
<td>O3—Na2vi</td>
<td>17.1132(69)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—O2</td>
<td>1.5196(62)</td>
<td>O3—Li1xvi</td>
<td>1.8641(158)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—O4</td>
<td>1.5785(57)</td>
<td>O2—Na1i</td>
<td>2.4565(62)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—O1</td>
<td>1.5680(57)</td>
<td>O2—Li1</td>
<td>1.8427(172)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—P1vi</td>
<td>10.6931(28)</td>
<td>O4—Na1i</td>
<td>2.7298(63)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O2i</td>
<td>2.4565(62)</td>
<td>O4—Li1viii</td>
<td>12.9493(199)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O2vi</td>
<td>9.414(6)</td>
<td>O1—Ti1iv</td>
<td>14.4966(60)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O2vii</td>
<td>7.5713(61)</td>
<td>O1—Na2v</td>
<td>17.3530(71)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O2</td>
<td>2.3934(61)</td>
<td>Li1—Ti1xvii</td>
<td>21.7070(207)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O4viii</td>
<td>6.1255(58)</td>
<td>Li1—Na1i</td>
<td>3.0959(170)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O4i</td>
<td>2.7298(63)</td>
<td>Li1—Na2xvii</td>
<td>22.1020(206)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atoms 1,2,3</td>
<td>Angle 1,2,3 [°]</td>
<td>Atoms 1,2,3</td>
<td>Angle 1,2,3 [°]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O1xi</td>
<td>10.5669(61)</td>
<td>Li1—Na2xvi</td>
<td>3.1224(185)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—O1</td>
<td>2.5984(61)</td>
<td>Li1—O5xvii</td>
<td>23.2278(218)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—Li1i</td>
<td>3.0959(170)</td>
<td>Li1—O3xvi</td>
<td>1.8641(158)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1—Li1xii</td>
<td>9.4044(165)</td>
<td>Li1—O4viii</td>
<td>14.5916(203)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2—P1xiii</td>
<td>10.9135(37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na1ii—Ti1—Na1i</td>
<td>168.700(4)</td>
<td>O1xi—Na1—Li1i</td>
<td>101.327(306)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2iii—Ti1—Na1ii</td>
<td>85.719(11)</td>
<td>O1—Na1—Li1xii</td>
<td>142.744(162)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2iii—Ti1—Na1i</td>
<td>85.719(11)</td>
<td>O1—Na1—Li1i</td>
<td>75.168(329)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5iv—Ti1—Na1ii</td>
<td>61.866(3)</td>
<td>Li1—Na1—Li1xii</td>
<td>138.343(316)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—Na1i</td>
<td>95.297(6)</td>
<td>O5v—Na2—P1xiii</td>
<td>112.780(11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—Na1ii</td>
<td>95.297(6)</td>
<td>O5v—Na2—O4</td>
<td>108.444(102)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5iv—Ti1—Na1i</td>
<td>110.205(3)</td>
<td>O5v—Na2—O4v</td>
<td>115.278(23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5iv—Ti1—Na2iii</td>
<td>86.391(13)</td>
<td>O5v—Na2—Li1xvi</td>
<td>67.553(368)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—Na2ii</td>
<td>118.985(268)</td>
<td>O5v—Na2—Li1xv</td>
<td>22.545(339)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—O5v</td>
<td>145.717(21)</td>
<td>O3xiv—Na2—P1xiii</td>
<td>115.460(29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—O4</td>
<td>93.259(146)</td>
<td>O3xiii—Na2—P1xiii</td>
<td>7.375(30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—O4v</td>
<td>90.486(22)</td>
<td>O3—Na2—P1xiii</td>
<td>69.430(138)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—O1vii</td>
<td>111.714(30)</td>
<td>O3v—Na2—P1xiii</td>
<td>35.948(27)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—O1vi</td>
<td>71.711(32)</td>
<td>O3v—Na2—O5v</td>
<td>107.563(23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5iv—Ti1—Li1viii</td>
<td>156.586(83)</td>
<td>O3xiv—Na2—O5x</td>
<td>37.679(24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—Li1viii</td>
<td>55.913(88)</td>
<td>O3xiv—Na2—O5x</td>
<td>109.538(26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Ti1—Li1v</td>
<td>35.066(74)</td>
<td>O3—Na2—O5x</td>
<td>73.27(12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5iv—Ti1—Li1x</td>
<td>171.951(68)</td>
<td>O3v—Na2—O3</td>
<td>39.741(138)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4—Ti1—Na1ii</td>
<td>136.675(169)</td>
<td>O3—Na2—O3xiii</td>
<td>73.854(139)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4v—Ti1—Na1i</td>
<td>9.289(25)</td>
<td>O3v—Na2—O3xiii</td>
<td>42.683(39)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4—Ti1—Na1i</td>
<td>46.362(168)</td>
<td>O3v—Na2—O3xiv</td>
<td>133.585(37)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4v—Ti1—Na1ii</td>
<td>172.960(25)</td>
<td>O3xiii—Na2—O3xv</td>
<td>108.685(39)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S14
O4—Ti1—Na2iii 95.000(25) O3—Na2—O3xiv 109.013(136)
O4—Ti1—Na2ii 125.764(168) O3xiii—Na2—O4 99.047(115)
O4—Ti1—O5v 88.595(146) O3xiii—Na2—O4v 48.974(39)
O4—Ti1—O5v 111.158(23) O3v—Na2—O4 58.673(115)
O4—Ti1—O4v 38.573(170) O3—Na2—O4 53.977(167)
O4—Ti1—Li1viii 48.450(75) O3xiv—Na2—O4v 144.012(36)
O4—Ti1—Li1viii 79.285(173) O3—Na2—O4v 43.752(139)
O4—Ti1—Li1x 75.462(59) O3v—Na2—O4v 10.612(36)
O4—Ti1—Li1x 99.439(157) O3xiv—Na2—O4 141.766(114)
O1xii—Ti1—Na1i 149.107(34) O3—Na2—O1xiv 113.03(14)
O1v—Ti1—Na1ii 166.854(36) O3v—Na2—O1xiv 141.633(40)
O1v—Ti1—Na1ii 24.829(34) O3xiii—Na2—O1xii 11.894(43)
O1v—Ti1—Na1i 23.659(37) O3xiv—Na2—O1xiii 119.979(41)
O1v—Ti1—Na2iii 98.679(36) O3—Na2—O1xii 74.707(141)
O1v—Ti1—Na2iii 93.554(34) O3xiii—Na2—O1xiv 117.293(42)
O1xiii—Ti1—O5v 39.083(31) O3v—Na2—O1xiii 38.389(41)
O1v—Ti1—O5v 130.506(33) O3xiv—Na2—O1xiv 9.016(40)
O1v—Ti1—O4v 148.252(42) O3—Na2—Li1xvi 36.581(358)
O1v—Ti1—O4 48.892(173) O3v—Na2—Li1xv 126.445(298)
O1v—Ti1—O4v 19.701(44) O3—Na2—Li1xv 95.495(347)
O1v—Ti1—O4 114.70(17) O3xiv—Na2—Li1xvi 90.116(299)
O1vii—Ti1—O1i 163.499(49) O3v—Na2—Li1xii 43.739(306)
O1v—Ti1—Li1x 56.498(67) O3xiv—Na2—Li1xv 15.752(308)
O1v—Ti1—Li1x 135.345(68) O3xiii—Na2—Li1xvi 49.599(289)
O1v—Ti1—Li1viii 163.165(82) O3xiii—Na2—Li1xvi 113.547(301)
O1v—Ti1—Li1xii 31.154(82) O4—Na2—P1xiii 91.689(113)
Li1x—Ti1—Na1ii 111.570(56) O4v—Na2—P1xiii 41.735(27)
Li1viii—Ti1—Na1i 47.582(71) O4v—Na2—O4 50.418(115)
Li1v—Ti1—Na1i 75.545(55) O4—Na2—Li1xv 127.003(207)
Li1viii—Ti1—Na1ii 138.545(72) O4v—Na2—Li1xvi 53.933(303)
<table>
<thead>
<tr>
<th>Distance (Å)</th>
<th>Error (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$_1^{viii}$—Ti$_1$—Na$_2^{iii}$</td>
<td>84.647(64)</td>
</tr>
<tr>
<td>Li$_1^{ix}$—Ti$_1$—Na$_2^{iii}$</td>
<td>88.486(50)</td>
</tr>
<tr>
<td>Li$_1^{viii}$—Li$_1^{ix}$</td>
<td>28.074(106)</td>
</tr>
<tr>
<td>Na$_1$—P$_1$—Na$_1^{i}$</td>
<td>69.396(45)</td>
</tr>
<tr>
<td>Na$_1$—P$_1$—Na$_2^x$</td>
<td>100.159(41)</td>
</tr>
<tr>
<td>Na$_1^{i}$—P$_1$—Na$_2^x$</td>
<td>117.900(65)</td>
</tr>
<tr>
<td>Na$_1$—P$_1$—Na$_2$</td>
<td>171.938(77)</td>
</tr>
<tr>
<td>Na$_2^x$—P$_1$—Na$_1^{i}$</td>
<td>168.202(45)</td>
</tr>
<tr>
<td>Na$_2^x$—P$_1$—Na$_2$</td>
<td>72.220(36)</td>
</tr>
<tr>
<td>O$_3$—P$_1$—Na$_1^{i}$</td>
<td>143.666(230)</td>
</tr>
<tr>
<td>O$_3$—P$_1$—Na$_1$</td>
<td>133.207(229)</td>
</tr>
<tr>
<td>O$_3$—P$_1$—Na$_2$</td>
<td>43.018(209)</td>
</tr>
<tr>
<td>O$_3$—P$_1$—Na$_2^x$</td>
<td>47.809(213)</td>
</tr>
<tr>
<td>O$_3$—P$_1$—O$_2$</td>
<td>117.821(324)</td>
</tr>
<tr>
<td>O$_3$—P$_1$—O$_4$</td>
<td>107.967(313)</td>
</tr>
<tr>
<td>O$_3$—P$_1$—O$_1$</td>
<td>107.559(316)</td>
</tr>
<tr>
<td>O$_2$—P$_1$—Na$_1^{i}$</td>
<td>49.306(220)</td>
</tr>
<tr>
<td>O$_2$—P$_1$—Na$_1$</td>
<td>49.575(221)</td>
</tr>
<tr>
<td>O$_2$—P$_1$—Na$_2$</td>
<td>137.338(239)</td>
</tr>
<tr>
<td>O$_2$—P$_1$—Na$_2^x$</td>
<td>128.147(229)</td>
</tr>
<tr>
<td>O$_2$—P$_1$—O$_4$</td>
<td>107.014(326)</td>
</tr>
<tr>
<td>O$_2$—P$_1$—O$_1$</td>
<td>106.939(326)</td>
</tr>
<tr>
<td>O$_4$—P$_1$—Na$_1$</td>
<td>118.825(217)</td>
</tr>
<tr>
<td>O$_4$—P$_1$—Na$_1^{i}$</td>
<td>59.741(205)</td>
</tr>
<tr>
<td>O$_4$—P$_1$—Na$_2$</td>
<td>65.513(208)</td>
</tr>
<tr>
<td>O$_4$—P$_1$—Na$_2^x$</td>
<td>124.815(206)</td>
</tr>
<tr>
<td>O$_1$—P$_1$—Na$_1$</td>
<td>57.452(204)</td>
</tr>
<tr>
<td>O$_1$—P$_1$—Na$_1^{i}$</td>
<td>108.770(219)</td>
</tr>
<tr>
<td>O$_1$—P$_1$—Na$_2^x$</td>
<td>59.822(205)</td>
</tr>
<tr>
<td>O$_1$—P$_1$—Na$_2$</td>
<td>115.196(222)</td>
</tr>
</tbody>
</table>

Note: All distances and errors are in Angstroms (Å) and Angstroms (Å).
<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1—P1—O4</td>
<td>109.355(289)</td>
<td>P1—O3—Li1^xvi</td>
<td>149.631(569)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—Na1—P1^xi</td>
<td>105.45(4)</td>
<td>Na2—O3—Na2^x</td>
<td>92.212(124)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—Na1—Li1^xvi</td>
<td>121.191(110)</td>
<td>Li1^xvi—O3—Na2^x</td>
<td>64.328(534)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1^xi—Na1—Li1^xii</td>
<td>49.673(100)</td>
<td>Li1^xvii—O3—Na2</td>
<td>93.409(596)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1^xi—Na1—Li1^i</td>
<td>93.477(314)</td>
<td>P1—O2—Na1^i</td>
<td>102.723(278)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1—Na1—Li1^i</td>
<td>82.794(322)</td>
<td>P1—O2—Na1</td>
<td>101.521(280)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^xi—Na1—P1</td>
<td>101.383(51)</td>
<td>P1—O2—Li1</td>
<td>152.067(643)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^xii—Na1—P1^xi</td>
<td>50.445(46)</td>
<td>Na1—O2—Na1^i</td>
<td>94.210(196)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Na1—P1^xi</td>
<td>78.083(139)</td>
<td>Li1—O2—Na1^i</td>
<td>90.976(566)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^xi—Na1—P1^xi</td>
<td>4.687(37)</td>
<td>Li1—O2—Na1</td>
<td>101.605(593)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^i—Na1—P1</td>
<td>92.958(134)</td>
<td>Ti1—O4—Na1^i</td>
<td>101.769(229)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^i—Na1—P1^xi</td>
<td>56.955(132)</td>
<td>Ti1—O4—Na2</td>
<td>100.292(218)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—P1</td>
<td>122.282(58)</td>
<td>Ti1—O4—Li1^viii</td>
<td>92.023(173)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Na1—P1</td>
<td>28.903(136)</td>
<td>P1—O4—Ti1</td>
<td>141.396(345)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^i—Na1—O2^i</td>
<td>54.235(135)</td>
<td>P1—O4—Na1^i</td>
<td>90.295(245)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O2^ii</td>
<td>54.520(57)</td>
<td>P1—O4—Na2</td>
<td>85.677(238)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O2^i</td>
<td>104.415(140)</td>
<td>P1—O4—Li1^viii</td>
<td>119.072(229)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Na1—O2^ii</td>
<td>97.249(146)</td>
<td>Na1^i—O4—Na2</td>
<td>149.197(227)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Na1—O2^i</td>
<td>85.790(184)</td>
<td>Li1^viii—O4—Na1^i</td>
<td>40.646(123)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Na1—O2^ii</td>
<td>74.486(142)</td>
<td>Li1^viii—O4—Na2</td>
<td>117.626(139)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O4^i</td>
<td>32.766(125)</td>
<td>Ti1^iv—O1—Na1</td>
<td>108.122(131)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O4^ii</td>
<td>17.129(69)</td>
<td>Ti1^iv—O1—Na2^x</td>
<td>39.726(14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Na1—O4^i</td>
<td>107.250(174)</td>
<td>P1—O1—Ti1^iv</td>
<td>154.320(223)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^i—Na1—O4^i</td>
<td>57.116(172)</td>
<td>P1—O1—Na1</td>
<td>91.973(249)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O4^ii</td>
<td>70.759(64)</td>
<td>P1—O1—Na2^x</td>
<td>115.698(214)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Na1—O4^iii</td>
<td>109.123(147)</td>
<td>Na1—O1—Na2^x</td>
<td>122.500(138)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O4^iii</td>
<td>116.605(141)</td>
<td>Ti1^viii—Li1—Na1</td>
<td>136.055(371)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O4^i</td>
<td>50.095(131)</td>
<td>Ti1^viii—Li1—Na2^xv</td>
<td>108.797(399)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O1^xi</td>
<td>42.017(55)</td>
<td>Ti1^viii—Li1—Na2^xvii</td>
<td>10.082(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2^ii—Na1—O1</td>
<td>143.351(135)</td>
<td>Na1^i—Li1—Ti1^viii</td>
<td>74.621(360)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
O2—Na1—O1 64.866(136) Na1—Li1—Na1 67.396(423)
O2—Na1—O1 12.647(47) Na1—Li1—Na2 156.973(602)
O2—Na1—O1 101.667(178) Na1—Li1—Na2 67.810(338)
O2—Na1—O1 130.141(132) Na2—Li1—Na1 98.571(418)
O2—Na1—O1 80.850(142) Na2—Li1—Na1 126.291(370)
O2—Na1—O1 59.441(179) Na2—Li1—Na2 111.930(385)
O2—Na1—Li1 90.676(322) O5—Li1—Ti 2.150(4)
O2—Na1—Li1 93.525(345) O5—Li1—Na1 134.398(370)
O2—Na1—Li1 36.522(329) O5—Li1—Na1 72.501(359)
O2—Na1—Li1 1.273(109) O5—Li1—Na2 9.052(8)
O2—Na1—Li1 96.023(177) O5—Li1—Na2 110.880(398)
O2—Na1—Li1 53.696(107) O3—Li1—Ti 98.330(627)
O2—Na1—Li1 104.013(169) O3—Li1—Na1 125.493(676)
O2—Na1—Li1 138.404(304) O3—Li1—Na1 153.017(749)
O2—Na1—P1 129.296(64) O3—Li1—Na2 107.802(591)
O2—Na1—P1 133.330(127) O3—Li1—Na2 50.009(437)
O2—Na1—P1 66.443(55) O3—Li1—O5 100.062(625)
O2—Na1—P1 29.365(121) O3—Li1—O4 103.306(593)
O2—Na1—O4 59.635(133) O2—Li1—Ti 121.136(618)
O2—Na1—Li1 50.123(157) O2—Li1—Na1 45.249(416)
O2—Na1—Li1 18.252(114) O2—Li1—Na1 52.502(429)
O2—Na1—Li1 88.343(313) O2—Li1—Na2 130.046(754)
O2—Na1—Li1 144.682(314) O2—Li1—Na2 117.513(615)
O2—Na1—Li1 134.587(129) O2—Li1—O5 119.064(620)
O2—Na1—Li1 30.575(131) O2—Li1—O3 116.529(840)
O2—Na1—Li1 8.432(33) O2—Li1—O4 125.440(616)
O2—Na1—P1 109.230(49) O4—Li1—Ti 11.488(34)
O2—Na1—P1 28.766(125) O4—Li1—Na1 129.430(381)
O2—Na1—P1 157.328(179) O4—Li1—Na1 74.949(338)
O2—Na1—P1 139.667(136) O4—Li1—Na2 8.100(34)
O1xi—Na1—O4xii 58.118(63) O4viii—Li1—Na2xvi 103.849(387)
O1xi—Na1—O1 139.440(133) O4viii—Li1—O5xvii 12.035(37)
O1xi—Na1—Li1xii 41.241(104)

(i) -x, 1-y, 1-z; (ii) -x, 1-y, -0.5+z; (iii) 1+x, y, z; (iv) x, -0.5-y, -z;
(v) x, y, 1.5-z; (vi) x, 1.5-y, 0.5+z; (vii) x, 0.5-y, -z; (viii) -x, 1.5+y, 1.5-z;
(ix) -x, 2.5+y, z; (x) 1+x, -0.5-y, -z; (xi) -x, 0.5+y, 1.5-z; (xii) x, 0.5-y, 0.5+z;
(xiii) 1+x, 1.5-y, 0.5+z; (xiv) 1+x, 0.5-y, -z; (xv) 1-x, 1-y, -0.5+z; (xvi) 1-x, 1-y, 1-z;
(xvii) -x, 2.5+y, 1+z.

REFERENCES
(1) Sheldrick, G., SHELXS-97, Program for crystal structure solution; University of Göttingen: Göttingen, Germany, 1997.