Supramolecular organisation of sulphate salt hydrates exemplified with brucine sulphate

Doris E. Braun

* Correspondence: doris.braun@uibk.ac.at

Table of Contents

1.	Long-time dehydration experiments of Brucine Sulphate	2
2.	Crystal Explorer Calculations - HyA	3
3.	Moisture dependent PXRD measurements	5
4.	Computational dehydration modelling	8

1. Long-time dehydration experiments of Brucine Sulphate

Figure S1. Comparison of Brucine and Brucine Sulphate samples. The first three samples were stored at approx. 0% RH. Amorphous Brucine Sulphate was stored at ambient conditions.

2. Crystal Explorer Calculations – HyA

Water	N ^b	Ac	Bc	Distance	E _E / kJ	E _P / kJ	E _D / kJ	E _R / kJ	E _{tot} / kJ
				(Å)	mol ⁻¹				
W1	2	W1	Brucine	7.20	-18.9	-5.2	-6.3	10.4	-22.9
	2	W1	W3	2.85	-23.4	-6.2	-3.2	28.6	-14.4
	2	W1	Brucine	9.19	-1.6	-0.8	-2.2	1.0	-3.6
	2	W1	W2	4.31	-1.9	-0.3	-0.6	0.1	-2.7
	2	W1	Brucine	6.23	12.4	-1.7	-2.4	0.3	10.0
W2	1/1	W2	Sulphate	3.73/3.70	-84.5/-	-42.5/-	-5.2/-5.1	21.0/49.2	-111.4/-
					106.5	57.2			128.9
	2	W2	W3	2.78	-40.9	-8.6	-3.2	43.9	-25.3
	2	W2	W4	2.72	-35.3	-9.6	-4.3	55.6	-13.8
	2	W2	Brucine	8.59	-5.1	-1.4	-2.6	1.5	-7.6
	2	W2	Brucine	6.6	0.7	-4.9	-6.2	5.4	-4.9
	2	W2	Brucine	9.89	-3.8	-0.3	-0.6	0.0	-4.8
	2	W2	W1	4.31	-1.9	-0.3	-0.6	0.1	-2.7
	2	W2	Brucine	5.24	7.1	-5.2	-9.2	7.2	0.2
	2	W2	W2B	4.61	5.2	-0.4	-0.7	0.1	4.7
W3	1/1	W3	Sulphate	4.13/4.15	-47.2/-	-32/-39.2	-3.4/-3.0	10.8/31.6	-69.8/-75.6
					60.0				
	2	W3	Brucine	6.54	-20.9	-6.7	-8.4	11.3	-27.4
	2	W3	W2	2.78	-40.9	-8.6	-3.2	43.9	-25.3
	2	W3	W1	2.85	-23.4	-6.2	-3.2	28.6	-14.4
	2	W3	Brucine	9.65	-5.9	-0.8	-1.5	0.8	-7.7
	2	W3	Brucine	6.60	0.2	-1.1	-1.9	0.2	-2.2
	2	W3	W4	4.77	2.8	-0.1	-0.3	0.0	2.7
	2	W3	Brucine	8.27	9.7	-1.3	-2.9	0.9	7.3
	2	W3	Brucine	6.09	12.5	-3.9	-8.3	8.2	8.2
W4	1/1	W4	Sulphate	3.83/3.78	-65.3/-	-35.9/46.7	-4.6/-4.6	21.2/33.5	-86.4/-95.7
					73.6				
	2	W4	Brucine	5.77	-37.3	-6.4	-8.2	37	-28.5
	2	W4	Brucine	8.02	-12.2	-1.3	-1.6	0.4	-15.0
	2	W4	W2	2.72	-35.3	-9.6	-4.3	55.6	-13.8
	2	W4	Brucine	8.30	-3.5	-1.7	-1.2	0.1	-6.1
	2	W4	Brucine	4.71	1.6	-2.9	-7.6	3.2	-5.1
	2	W4	W3	4.77	2.8	-0.1	-0.3	0.0	2.7
	2	W4	Brucine	6.02	11.8	-2.8	-4.3	0.8	7.1

Table S1. Overview of pairwise interaction energies^a of Brucine Sulphate **HyA** water molecules (Fig. 8b of the manuscript).

^aElectrostatic (E_E), polarisation (E_P), dispersion (E_D) and exchange-repulsion energy (E_R) contributions. ^bInteractions present either once (1) or twice (2). ^cMolecules involved. ^d $E_{tot} = k_E E_E + k_P E_P + k_D E_D + k_R E_R$, with k being scale factors.

Inter-	N ^a	Α	В	Distance (Å)	E _E	E _P	ED	ER	<i>E</i> _{tot} ^b
action					(kJ mol⁻¹)	(kJ mol⁻¹)	(kJ mol⁻¹)	(kJ mol⁻¹)	(kJ mol⁻¹)
1	2	Brucine	Sulphate	6.51	-708.8	-223.3	-18.6	73.9	-885.1
2	2	Brucine	Sulphate	6.52	-676.4	-197.4	-18	41.7	-851.1
3	2	Brucine	Sulphate	6.88	-466.4	-154.1	-11.9	25.2	-602
4	2	Brucine	Sulphate	6.92	-447	-129.8	-11.3	7.7	-573.8
5	2	Water	Sulphate	3.7	-106.5	-57.2	-5.1	49.2	-128.9
6	2	Water	Sulphate	3.73	-84.5	-42.5	-5.2	21	-112.4
7	2	Water	Sulphate	3.78	-73.6	-46.7	-4.6	33.5	-95.7
8	2	Water	Sulphate	3.83	-65.3	-35.9	-4.6	21.2	-86.4
9	2	Water	Sulphate	4.15	-60	-39.2	-3	31.6	-75.6
10	2	Water	Sulphate	4.13	-47.2	-32	-3.4	10.8	-69.8
11	4	Water	Brucine	5.77	-37.3	-6.4	-8.2	37	-28.5
12	4	Water	Brucine	6.54	-20.9	-6.7	-8.4	11.3	-27.4
13	4	Water	Water	2.78	-40.9	-8.6	-3.2	43.9	-25.3
14	4	Brucine	Water	7.2	-18.9	-5.2	-6.3	10.4	-22.9
15	4	Brucine	Water	8.02	-12.2	-1.3	-1.6	0.4	-15
16	4	Water	Water	2.85	-23.4	-6.2	-3.2	28.6	-14.4
17	4	Water	Water	2.72	-35.3	-9.6	-4.3	55.6	-13.8
18	4	Brucine	Water	9.65	-5.9	-0.8	-1.5	0.8	-7.7
19	4	Brucine	Water	8.59	-5.1	-1.4	-2.6	1.5	-7.6
20	4	Brucine	Water	8.3	-3.5	-1.7	-1.2	0.1	-6.1
21	4	Brucine	Water	4.71	1.6	-2.9	-7.6	3.2	-5.1
22	4	Brucine	Water	6.6	0.6	-4.9	-6.2	5.4	-4.9
23	4	Brucine	Water	9.89	-3.8	-0.3	-0.6	0	-4.8
24	4	Brucine	Water	9.19	-1.6	-0.8	-2.2	1	-3.6
25	4	Water	Water	4.31	-1.9	-0.3	-0.6	0.1	-2.7
26	4	Brucine	Water	6.6	0.2	-1.1	-1.9	0.2	-2.2
27	4	Brucine	Water	5.24	7.1	-5.2	-9.2	7.2	0.2
28	4	Water	Water	4.77	2.8	-0.1	-0.3	0	2.7
29	2	Water	Water	4.61	5.2	-0.4	-0.7	0.1	4.7
30	4	Brucine	Water	6.02	11.8	-2.8	-4.3	0.8	7.1
31	4	Brucine	Water	8.27	9.7	-1.3	-2.9	0.9	7.3
32	4	Brucine	Water	6.09	12.5	-3.9	-8.3	8.2	8.2
33	4	Brucine	Water	6.23	12.5	-1.7	-2.4	0.3	10
34	2	Brucine	Brucine	6.36	88.3	-19.5	-96	71.3	39.4
35	2	Brucine	Brucine	7.43	86.9	-22.5	-77.8	57.4	42.9
36	2	Brucine	Brucine	7.43	87.3	-22.5	-77.8	57.5	43.4
38	2	Brucine	Brucine	13.74	79.5	-2.1	-1.7	0	81.1
39	2	Brucine	Brucine	12.18	117.5	-7.2	-14.1	11.7	113.8
40	2	Brucine	Brucine	12.18	117.5	-7.2	-14.1	11.7	113.9
41	2	Brucine	Brucine	9.37	150.1	-13.4	-9.6	1.5	141.4
42	2	Brucine	Brucine	9.37	150.3	-13.4	-9.6	1.5	141.5
43	2	Brucine	Brucine	9.37	158.6	-16.5	-9.2	0.9	148
44	2	Brucine	Brucine	9.37	158.7	-16.5	-9.2	0.9	148.2

Table S2. Pairwise intermolecular interaction energies^a of Brucine Sulphate Hy A (P2₁ setting).

^a(2) – interaction present twice, (4) – interaction present four times. ^bElectrostatic (E_E), polarisation (E_P), dispersion (E_D) and exchange-repulsion energy (E_R) contributions. ^b $E_{tot} = k_E E_E + k_P E_P + k_D E_D + k_R E_R$, with k being scale factors.

3. Moisture-dependent PXRD measurements

Figure S2. Moisture-dependent PXRD measurements of **BS** hydrates, indicating three different hydrates. The numbers given correspond to the relative humidity in % at which the PXRD pattern was recorded.

Figure S3. Observed (black points), calculated (red line) and difference (green line) profiles for the Pawley fit of **HyA** (measured at 26% RH). Blue tick marks denote the peak positions.

Figure S4. Observed (black points), calculated (red line) and difference (green line) profiles for the Pawley fit of **HyC** (measured at 18% RH). Blue tick marks denote the peak positions.

т /°С	RH /%	Space group	a /Å	b/Å	<i>c /</i> Å	β/°	Vol /ų	R wp	R exp	R p	Solid Form
25	90	C222 ₁	12.239(<1)	14.486(<1)	26.866(1)	90	4763.20(34)	8.51	2.18	5.97	НуА
25	80	C222 ₁	12.240(<1)	14.472(<1)	26.848(1)	90	4755.23(22)	8.44	2.19	5.98	НуА
25	70	C2221	12.239(<1)	14.456(<1)	26.820(1)	90	4745.00(33)	8.50	2.18	6.00	НуА
25	60	C222 ₁	12.240(1)	14.439(<1)	26.797(1)	90	4735.81(35)	9.00	2.19	6.32	НуА
25	50	C222 ₁	12.242(<1)	14.422(<1)	26.775(1)	90	4727.36(33)	8.53	2.18	5.98	НуА
25	40	C2221	12.245(<1)	14.399(<1)	26.750(1)	90	4716.47(34)	8.94	2.18	6.18	НуА
25	30	C222 ₁	12.250(1)	14.366(<1)	26.715(2)	90	4701.45(37)	9.41	2.18	6.49	НуА
25	26	C222 ₁	12.251(1)	14.357(<1)	26.707(2)	90	4697.53(38)	9.51	2.18	6.53	НуА
25	18	P2 ₁	9.494(1)	26.088(3)	9.298(1)	98.111(3)	2279.94(32)	11.75	1.67	7.80	НуС
25	10	P2 ₁	9.487(1)	26.060(2)	9.297(1)	98.074(3)	2275.62(29)	11.33	2.17	7.62	НуС
25	5	P2 ₁	9.484(1)	26.041(2)	9.295(1)	98.063(3)	2272.83(29)	11.27	2.16	7.62	НуС
25	0.6	P2 ₁	9.490(1)	25.970(3)	9.292(1)	98.086(3)	2267.14(30)	11.32	2.16	7.61	HyC

 Table S3. Refined unit-cell parameters of Brucine Sulphate hydrates.

4. Computational dehydration modelling

Structure	PBE-TS	Δ E_{latt}	Energy required to remove 1	PBE-D2	ΔE_{latt}	Energy required to remove 1
	/ kJ mol ^{−1}	/ kJ mol⁻¹	water molecule / kJ mol ⁻¹	/ kJ mol ^{–1}	/ kJ mol⁻¹	water molecule / kJ mol ⁻¹
Hept_A	-1725936.47	0.73		-1726016.84	1.67	
Hept_B	-1725937.19	0.00		-1726018.51	0.00	
Hex_B1	-1680618.97	14.39	-83.59	-1680702.16	12.23	-82.36
Hex_B2	-1680602.76	30.60	-99.80	-1680685.89	28.50	-98.63
Hex_B3	-1680600.84	32.52	-101.72	-1680689.99	24.41	-94.53
Hex_B4	-1680633.36	0.00	-69.20	-1680714.39	0.00	-70.13
Hex_B5	-1680624.79	8.56	-77.76	-1680710.73	3.66	-73.79
Hex_B6	-1680596.77	36.59	-105.79	-1680683.77	30.62	-100.75
Hex_B7	-1680605.74	27.61	-96.81	-1680688.35	26.05	-96.17
Penta_B1	-1635309.281	0.00	-80.05	-1635394.05	0.00	-74.12
Penta_B2	-1635298.064	11.22	-85.65	-1635379.76	14.29	-88.41
Penta_B3	-1635306.372	2.91	-81.50	-1635388.74	5.32	-79.43
Penta_B4	-1635307.534	1.75	-80.92	-1635392.88	1.17	-75.29
Penta_B5	-1635292.092	17.19	-88.64	-1635376.82	17.24	-91.36
Penta_B6	-1635294.046	15.24	-87.66	-1635379.03	15.03	-89.15
Isomorphic dehydrate	-1408693.74		-86.58	-1408794.15		-83.78

Table S4. Total CASTEP energies, lattice energy differences (same hydrate stoichiometry) and energy required to remove water molecules (averaged per water).