Determination of element-deuterium bond lengths in Zintl phase hydrides by 2H-NMR

Robin Guehne,†‡ Henry Auer,*¶ Holger Kohlmann,¶ Jürgen Haase,† and Marko Bertmer*†

†Felix Bloch Institute, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
‡MacDiarmid Institute, School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
¶Department of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany

E-mail: henry.auer@uni-leipzig.de; bertmer@physik.uni-leipzig.de

Supplementary information to the publication in
Phys. Chem. Chem. Phys. 2019,

Contents

Dependency of C$_Q$ regarding the dihedral Si-chain to D angle 2
Evaluation of Si-D bond lengths from experimental C$_Q$ values 3
Evaluation of Ge-D bond lengths from experimental C$_Q$ values 5
Sn-D: C$_Q$-distance dependency according to SnD$_4$ model 6
2H MAS spectra at slow spinning showing spinning sideband pattern 7
Dependency of C_Q regarding the dihedral Si-chain to D angle

Figure S1: Changes of C_Q and η regarding to the dihedral angle of the plane of the Si zig-zag chain towards deuterium. The BaSiD$_2$-structure was used as a model system. Results are shown for the DFT-optimised bond length $d(\text{Si-D}) = 157$ pm and two additional values. The DFT-optimised structure exhibits a bond angle of 95.6° which is indicated by the grey lines.
Evaluation of Si-D bond lengths from experimental C_Q values

Figure S2: Empirical fits to DFT-derived C_Q-distance curves for the silicon systems.
Table S1: Si-D-distances calculated from experimental C_Q values using the C_Q-distance dependencies as given in Fig. S2.

<table>
<thead>
<tr>
<th>compound</th>
<th>C_Q,exp / kHz</th>
<th>d_{calc}(Si-D) / Å</th>
<th>d_{exp}(Si-D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SiD_4-model</td>
<td>CaSiD_{4/3}-model</td>
<td>BaSiD_2-model</td>
</tr>
<tr>
<td>CaSiD_{4/3-x}</td>
<td>69(1) 1.552(3)</td>
<td>1.566(3)</td>
<td>1.562(3)</td>
</tr>
<tr>
<td>SrSiD_{5/3-x}</td>
<td>63(1) 1.572(4)</td>
<td>1.584(3)</td>
<td>1.581(4)</td>
</tr>
<tr>
<td>BaSiD_{2-x}</td>
<td>78(3) 1.526(8)</td>
<td>1.540(8)</td>
<td>1.536(8)</td>
</tr>
<tr>
<td></td>
<td>58(2) 1.589(7)</td>
<td>1.601(7)</td>
<td>1.597(7)</td>
</tr>
<tr>
<td>SiD_4</td>
<td>95</td>
<td>1.482</td>
<td>1.493</td>
</tr>
<tr>
<td>CH<sub>3</sub>SiD</td>
<td>90(2) 1.494(5)</td>
<td>1.509(5)</td>
<td>1.505(5)</td>
</tr>
<tr>
<td>C<sub>6</sub>D<sub>5</sub>SiD</td>
<td>91(2) 1.492(5)</td>
<td>1.507(5)</td>
<td>1.502(4)</td>
</tr>
<tr>
<td>β-KSiD<sub>3</sub></td>
<td>72.0(5) 1.543(2)</td>
<td>1.557(2)</td>
<td>1.553(2)</td>
</tr>
</tbody>
</table>

^aTypical bond lengths. Determined for disilane (Si₂H₆).³⁴
Evaluation of Ge-D bond lengths from experimental C_Q values

![Graphs showing empirical fits to DFT-derived C_Q-distance curves for the germanium systems.]

Figure S3: Empirical fits to DFT-derived C_Q-distance curves for the germanium systems.

Table S2: Ge-D-distances calculated from experimental C_Q values using the C_Q-distance dependencies as given in Fig. S3.

<table>
<thead>
<tr>
<th>compound</th>
<th>$C_{Q,exp}$ / kHz</th>
<th>d_{calc}(Ge-D) / Å</th>
<th>d_{exp}(Ge-D) / Å</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GeD$_4$-model</td>
<td>SrGeD$_{4/3}$-model</td>
</tr>
<tr>
<td>SrGeD$_{4/3-x}$</td>
<td>52(2)</td>
<td>1.642(8)</td>
<td>1.652(8)</td>
</tr>
<tr>
<td>BaGeD$_{5/3-x}$</td>
<td>51(2)</td>
<td>1.646(8)</td>
<td>1.659(8)</td>
</tr>
<tr>
<td></td>
<td>61(2)</td>
<td>1.609(7)</td>
<td>1.620(7)</td>
</tr>
<tr>
<td>GeD$_4$</td>
<td>82(5)a</td>
<td>1.545(14)</td>
<td>1.558(13)</td>
</tr>
<tr>
<td>CH$_3$GeD$_3$</td>
<td>82(2)a</td>
<td>1.545(7)</td>
<td>1.558(6)</td>
</tr>
</tbody>
</table>

aTypical bond lengths. Determined from germane (GeD$_4$)a and digermane (Ge$_2$H$_6$)a.
Sn-D: C_Q-distance dependency according to SnD_4 model

Figure S4: Empirical fit to the DFT-derived C_Q-distance curve of SnD_4. The experimental reference data are: SnD_4: d(Sn-D) = 1.706(3) Å (at 5 K), C_Q = 66(5) kHz. BaSnD_{4/3-x}: d(Sn-D) = 1.858(8) Å, C_Q = 38(2) kHz (this work).

A evaluation of the Sn-D bond length from experimental C_Q-values according to the empirically fitted curve gives:

SnD_4: d(Sn-D) = 1.721(18) Å.

BaSnD_{4/3-x}: d(Sn-D) = 1.846(12) Å.
2H MAS spectra at slow spinning showing spinning sideband pattern

Figure S5: 2H MAS spectrum of BaSiD$_{2-x}$ recorded with a spinning frequency of 4 kHz. The central line is vertically cut for better visibility of sideband intensities.

Figure S6: 2H MAS spectrum of SrSiD$_{5/3-x}$ recorded with a spinning frequency of 3.4 kHz. The central line is vertically cut for better visibility of sideband intensities.
Figure S7: 2H MAS spectrum of CaSiD$_{4/3-x}$ recorded with a spinning frequency of 8 kHz. The central line is vertically cut for better visibility of sideband intensities.

Figure S8: 2H MAS spectrum of BaGeD$_{5/3-x}$ recorded with a spinning frequency of 3.4 kHz. The central line is vertically cut for better visibility of sideband intensities.
Figure S9: 2H MAS spectrum of SrGeD$_{4/3-x}$ recorded with a spinning frequency of 1.5 kHz. The central line is vertically cut for better visibility of sideband intensities.

Figure S10: 2H MAS spectrum of BaSnD$_{4/3-x}$ recorded with a spinning frequency of 3.4 kHz. The central line is vertically cut for better visibility of sideband intensities.
References

