Tuning the work function of the silicene-4x4 Ag(111) surface

Patrick D. Taylor,1‡ Dale A. Osborne,1‡ Sherif Abdulkader Tawifk,1 Tetsuya Morishita,2 Michelle J.S. Spencer1*

1School of Science, RMIT University, GPO Box 2476 Melbourne, Victoria 3001 Australia.

Figure S1: The bond distance between the Si atom and the covalently bonded atom in the respective functional group. A schematic of the structure is displayed in (a). The calculated variation in bond distances are for (b) the surface functionalised with (b) six phenyl (C$_6$H$_5$) groups, (c) six fluorine (F) atoms, (d) six chlorine (Cl) atoms, (e) six bromine (Br) atoms, (f) six iodine (I) atoms, (g) six methyl (CH$_3$) groups, (h) six cyano (CN) groups, (i) six amino (NH$_2$) groups, (j) six ethylmethylamine ((CH$_2$)$_2$NHCH$_3$) groups, (k) six hydroxyl (OH) groups and (l) six methoxy (OCH$_3$) groups.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019
Figure S2: The variation in the horizontal orientation, in degrees, for each of the 6 phenyl groups in the structure in Fig. 2(b) as a function of time. The unit of the variation in the angles, $\Delta \theta$, is in degrees.
Figure S3: The electronic band structure for the free-standing silicene monolayer, with the Si atoms frozen to coordinates position.

Figure S4: Calculated PDOS for the most stable geometry of the pristine Si/Ag(111) showing a zoomed in region around the fermi level.