Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Electronic Supplementary Information

Assessing thermal spike model of swift heavy ion-matter interaction via Pd$_{1-x}$Ni$_x$/Si interface mixing

Paramita Patraa, S. A. Khanb, M. Balac, D. K. Avasthid, S. K. Srivastavaa

aDepartment of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
bInter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India
cDepartment of Physics and Astrophysics, University of Delhi, New Delhi 110007, India
dAmity Institute of Nanotechnology, Amity University, Sector 125, Noida 201313, India
The evolution of lattice temperature with time for 100 MeV Au ions in Ni right at the ion track. The three coincident curves are plotted for the following three sets of lattice temperature dependent lattice thermal conductivities: $K_l(T_l)$ for Ni (black), $K_l(T_l)$ reduced by a factor of 10 (red), and multiplied by a factor of 10 (blue) from the Ni value at all lattice temperatures.
Fig. S2: (a) The electron densities of states of the Pd$_{1-x}$Ni$_x$ ($x = 0, 0.25, 0.5, 0.75, 1$) alloy system. (b) Variations of G and C_e with T_e for this alloy system.
Fig. S3: Variation of G (a) and C_e (b) with x at different sampled electronic temperatures.

References