Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2019

Supporting Information

Theoretical investigation of the valence states in Au via the Au-F compounds under

high pressure

The formation enthalpy $(H_{f/atom})$ of each stoichiometric phase is defined as:

$$H_{f/atom} = \frac{H_{AuF_x/f.u.} - H_{Au/atom} - x H_{F/atom}}{1 + x}$$

where we use the *Fm*-3*m* structure for Au^[1] and the C2/m or C2/c structures for $F_2^{[2]}$ as the endpoints at the appropriate pressures.

- [1] P. M. Bell, J. Xu, H. K. Mao, In Shock Waves in Condensed Matter, Ed. Y. M Gupta, Plenum, New York, 1986.
- [2] L. Pauling, I. Keaveny, A. B. Robinson, J. Solid State Chem. 1970, 2, 225–227.

Parameter Convergence Test

Energy cutoff (eV)	AuF, Energy (eV/atom)	AuF ₂ , Energy (eV/atom)	AuF ₃ , Energy (eV/atom)	
400	-2.9414	-2.8865	-2.9411	
500	-2.9364	-2.8793	-2.9303	
600	-2.9372	-2.8807	-2.9320	
700	-2.9379	-2.8824	-2.9338	
800	-2.9384	-2.8830	-2.9343	
1000	-2.9384	-2.8830	-2.9343	
1200			-2.9345	

a) Energy cutoff test at selected pressures.

We set energy cutoff with 700 eV in structural optimization, enthalpy and electronic structure calculations.

b) Monkhorst-Pack grid test at selected pressures.

Monkhorst-Pack grid	AuF, Energy (eV/atom)	AuF ₂ , Energy (eV/atom)	AuF ₃ , Energy (eV/atom)	
1.0			-2.9291	
0.8	-2.9845	-2.8635	-2.9312	
0.5	-2.9372	-2.8814	-2.9320	
0.4	-2.9306	-2.8819	-2.9320	
0.3	-2.9234	-2.8803	-2.9320	
0.2	-2.9288	-2.8819	-2.9320	
0.15	-2.9281	-2.8821		

Theoretical Method Test

	parameters (Å)
Exp.	<i>a</i> = 5.151, <i>c</i> = 16.264
PBE	<i>a</i> = 5.324, <i>c</i> = 16.554
PBEsol	<i>a</i> = 5.127, <i>c</i> = 16.396
Vdw	<i>a</i> = 5.037, <i>c</i> = 16.619
LDA	<i>a</i> = 4.869, <i>c</i> = 16.317

Lattice parameters of AuF₃ at ambient pressure.

Enthalpies/lattice parameters of AuF_2 with PBE and PBEsol functionals at 15 GPa. And the energy sequences of AuF_2 are same with different functionals.

Phase		PBE	PBEsol	
	H (eV/f.u.)	-5.529	0.057	
$P2_{1}/c$	Lattice (Å)	a = 2.908, b = 5.933, c = 5.134,	a = 2.822, b = 5.931, c = 5.034,	
		$\beta = 125.7^{\circ}$	$\beta = 125.9^{\circ}$	
Cmom	H (eV/f.u.)	-5.592	-0.043	
Cmcm	Lattice (Å)	a = 5.144, b = 6.237, c = 4.300	a = 5.048, b = 6.172, c = 4.221	
Duma	H (eV/f.u.)	-5.632	-0.084	
	Lattice (Å)	a = 4.203, b = 5.424, c = 6.149	a = 4.124, b = 5.320, c = 6.101	

We compared the ionization energy for Au⁺ⁿ (n=0, 1, 2, 3, 4, 5, and 6) using PBE PBE0 B3LYP functional and SK-MCDHF-RSC basis set. The relativistic kinetic energy is considered with ZORA implemented in orca quantum chemistry program (https://orcaforum.cec.mpg.de). The corresponding ionization energies are given in the following figure. Our tests show that PBE, B3LYP, and PBE0 give similar ionization energy and the computed ionization energies agree with the experimental values. For example, from Au⁰ to Au⁺¹, the ionization energies are 880.5 KJ/mol (PBE), 909.8 KJ/mol (B3LYP), 890.2 KJ/mol (PBE0), and 890.1 KJ/mol (experiment, http://http//www.freshney.org). Considering these ionization energies, the results of PBE should be sufficient to describe the Au complexes.

The calculated lattice parameters of the ambient AuF_3 phase were compared with different theory levels. The PBE and PBEsol methods give better results. It is normal that PBEsol improves on PBE for equilibrium properties, but typically is worse for dissociation or cohesive energies. The formation energy of AuF_6 was tested between PBE and PBEsol, and they produced similar conclusion. Therefore, we mainly adopted PBE GGA functional during the study.

Figures and captions:

Figure S1: The calculated (a) enthalpy and (b) volume as a function of pressure forAuF₃.

Figure S2: The calculated enthalpy as a function of pressure for (a) AuF₂, (b) AuF and (c) AuF₄.

Figure S3: The equations of state of (a) AuF_2 , (b) AuF_4 and (c) AuF_6 compared with their reactants.

Figure S4: The phonon dispersions curve of (a) AuF_2 (*Pnma*) phase, (b) the AuF_3 (*Cmc*2₁) phase and (c) the AuF_4 (*C*2/*c*) phase.

Figure S5: The crystal field splitting diagrams of square planar and octahedral geometries.

Figure S6: Figure 5: Band structures along high symmetry paths of (a) the *Pnma* phase (AuF₂), (b) the *Cmc* 2_1 phase (AuF₃), (c) the *C*2/c phase (AuF₄) and (d) the *R*-3 phase (AuF₆). The Fermi level has been set to 0 eV.

Figure S7: The band structure of the $Cmc2_1$ phase (AuF₃) calculated with the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06). The Fermi level has been set to 0 eV.

Figure S8: The calculated integrated crystal orbital Hamiltonian populations (ICOHP) for Au-F, Au-Au and F–F pairs in AuF_n compounds at 20 GPa.

Table. The calculated crystal structure data of \mbox{AuF}_n .

Space group	Pressure (GPa)	Lattice parameters (Å)	Atoms	x	у	Z
		<i>a</i> = 2.930				
D2 = (A = E)	10	<i>b</i> = 11.049	Au	0.3835	0.4219	0.7497
$P2_1c$ (AUF)	10	<i>c</i> = 4.465	F	0.0799	0.1874	0.7493
		$\beta = 130.84^{\circ}$				
	10	a = 2.923				
D2/m(AnE)		b = 3.374	Au	0.3850	0.75	0.8438
$F Z_1/m$ (Aur)		c = 5.5272	F	0.2120	0.25	0.6253
		$\beta = 85.48^{\circ}$				
		<i>a</i> = 4.267				
D / a (AuE)	0	<i>b</i> = 5.536	Au	1.0650	0.2893	0.3678
$r z_1/c (\operatorname{Aur}_2)$	0	c = 6.399	F	0.5	0.5	0
		$\beta = 136.85^{\circ}$				
		a = 5.2545	Au	0.8492	0.25	0.0369
Pnma (AuF ₂)	10	b = 4.172	F(1)	0.4126	0.25	0.1485
		c = 6.152	F(2)	0.1966	0.75	0.2776
	0	a = 5,320	Au	0.4766	0.2383	0.0833
<i>P</i> 6 ₁ 22 (AuF ₃)		b = 16.559	F(1)	0.1647	0	0
			F(2)	0.7695	0.3093	0.0046
		a = 4.420	Au	0	0.3335	0.4923
$Cmc2_1$	20	2_1 20 $h = 7.207$	F(1)	0	0.1003	0.3377
(AuF ₃)		0 = 7.397	F(2)	0	0.2155	0.8033
		c = 5.455	F(3)	0	0.4251	0.1460
	20		Au(1)	0.75	0.75	0.5
		<i>a</i> = 7.978	Au(2)	0.75	0.75	0
C^{2}/c (AuE.)		<i>b</i> = 6.702	F(1)	0.7602	0.7953	0.8538
$C_{2}(C(Aur_4))$		c = 12.430	F(2)	0.7411	0.7853	0.3435
		$\beta = 141.35^{\circ}$	F(3)	0.4842	0.9887	0.5965
			F(4)	0.0117	0.9836	0.3591