Revealing the Mechanistic Pathway of Cholinergic inhibition of Alzheimer’s disease by Donepezil: A Metadynamics Simulation Study

Shibaji Ghosh, a,b Kalyanashis Jana, a,b and Bishwajit Ganguly,* a,b

a Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India-364 002.
b Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India-364 002.

Fax: (+91)-278-2567562, Telephone: (+91)-278-2567760 Ext: 6770
E-mail: ganguly@csmcri.res.in; gang_12@rediffmail.com

Electronic supplementary information

hAChE & Donepezil Crystal

Fig. S1 The free energy profiles as a function of a CV namely Ser203, Glu334 and His447 with donepezil crystal were plotted at different time and compared with other to access the convergence of a well-tempered metadynamics simulation.
hAChE & Docked Donepezil

![Graphs](image)

Fig. S2 The free energy profiles as a function of a CV namely Ser203, Glu334 and His447 with docked donepezil were plotted at different time and compared with other to access the convergence of a well-tempered metadynamics simulation.
hAChE & Donepezil Crystal

Fig. S3 Time evaluation plot of the examined CVs (CV1 = Ser203 & Donepezil; CV2 = His447 & Donepezil; CV3 = Glu334 & Donepezil) of the well-tempered metadynamics simulation for Donepezil crystal.

hAChE & Docked Donepezil

Fig. S4 Time evaluation plot of the examined CVs (CV1 = Ser203 & donepezil; CV2 = His447 & Donepezil; CV3 = Glu334 & Donepezil) of the well-tempered metadynamics simulation for docked donepezil.