Supporting Information

Reactive Nanomessengers for Artificial Chemical Communication

Luca Fichera, Giovanni Li-Destri, Roberta Ruffino, Grazia Maria Lucia Messina, Nunzio Tuccitto*

Jupyter notebook related to the typical code to simulate artificial molecular communication
Import libraries

FiPy is an object oriented, partial differential equation (PDE) solver, written in Python, based on a standard finite volume (FV) approach. The framework has been developed in the Materials Science and Engineering Division (MSED) and Center for Theoretical and Computational Materials Science (CTCMS), in the Material Measurement Laboratory (MML) at the National Institute of Standards and Technology (NIST).

Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms.

NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more.

In []:

```python
from fipy import *
import matplotlib.pyplot as plt
import numpy as np
```

I define the simulation mesh in cm
“nx” is the number of steps in mesh along x
“ny” is the number of steps in mesh along y
“dx” is the step length in mesh along x
“dy” is the step length in mesh along y

In []:

```python
nx = 10
ny = 10
dx = 1.
dy = 0.1
```

Input physical parameters
“F” is applied steady pressure gradient dp/dx
“rho” is the fluid density
“nu” absolute viscosity
“ry” is the array representing the distance “r” from the center of the tube along y direction

In []:

```python
F = 1.
rho = 1 #g/cm3
nu = 8.9E-4 # Pa*s == g/cms
ry = np.linspace(-(ny*dy)/2,(ny*dy)/2,10)
```

the mesh is periodically mirrored 3 times
Calculate the profile of \(V(u,v) \) by solving the Navier-Stokes in a channel

\[
\rho \left(\frac{\partial V_x}{\partial t} + V_x \frac{\partial V_x}{\partial x} + V_y \frac{\partial V_x}{\partial y} \right) = -\frac{\partial p}{\partial x} + \rho g_x + \mu \left(\frac{\partial^2 V_x}{\partial x^2} + \frac{\partial^2 V_y}{\partial y^2} \right)
\]

Boundary conditions:

\[y = \pm b, \, V_x = 0 \text{ (no slip condition)} \]

\[
\mu \frac{\partial^2 V_x}{\partial y^2} = \frac{\Delta P}{L}
\]

\[V_{max} = \left(\frac{\Delta P}{L} \right) \left(\frac{b^2}{2\mu} \right) \]

\[V_x(u) = V_{max} \times (1 - \frac{y^2}{b^2}) \]

Now I initialize the concentration in the simulation meshes as 1E10-14
phi1_2D is the concentration of the messenger
phi2_2D is the concentration of the quencher
phiR_2D is the concentration of the quenched messenger

```
In [ ]:

phi1_2D = np.zeros_like(X)+(10**(-14))
phi2_2D = np.zeros_like(X)+(10**(-14))
phiR_2D = np.zeros_like(X)+(10**(-14))
xS = 15
yS = 3
xR = 15
yR = 5
u = Poiseuille_flows(F,u)

FiPy library works only for 1D variable so that I reshape phi1 phiR and phi2

```
```
In [ ]:

phi_value1 = phi1_2D.reshape(nx*3*ny*3)
phi1 = CellVariable(name="messenger", mesh=mesh, value=phi_value1)
phi_valueR = phiR_2D.reshape(nx*3*ny*3)
phiR = CellVariable(name="quenched messenger", mesh=mesh, value=phi_valueR)
phi_value2 = phi2_2D.reshape(nx*3*ny*3)
phi2 = CellVariable(name="quencher", mesh=mesh, value=phi_value2)
```

Differential equation to be solved

\[
\frac{\partial C_1}{\partial t} = \nabla \cdot (D \nabla \phi - \bar{V} \phi) + R
\]

FiPy solves field variables on the cell centers. Transient and source terms describe the change in the value of a field at the cell center, and so they take a CellVariable coefficient. Diffusion and convection terms involve fluxes between cell centers, and are calculated on the face between two cells, and so they take a FaceVariable coefficient.

```
In [ ]:

V = CellVariable(name= "speed", mesh=mesh, value = 0., rank = 1)
```
```
In [ ]:

D = np.array(((.1, 0.), (0., 0.1)))
```
```
In [ ]:

eqX = TransientTerm() == DiffusionTerm(coef=D) - VanLeerConvectionTerm(coef=V)
```
I define the time step duration of the numerical solution, the number of numerical time steps to solve and calculate time variable (named "tempo")

```python
In [ ]:

timeStepDuration = 0.1
steps = 1200
tempo = np.arange(0,(steps*timeStepDuration+timeStepDuration),0.1)
```

I generate the array of coefficients that multiply the speed to make it variable

```python
In [ ]:

F = np.ones(steps)
F[100:200] = 1.3
F[200:300] = 1.8
F[300:600] = 0.8

from scipy.signal import savgol_filter
F = savgol_filter(F, 701, 3)  # window size 701, polynomial order 3
F = F/5
plt.plot(F)
plt.ylabel('F')
plt.xlabel('time steps')
plt.show()
```

I generate the carrier array

```python
In [ ]:

Source = np.zeros(steps)
Source[0] = 1.
Source[400] = 1.
Source[600] = 1.
Source[800] = 1.
```

I generate the array of the reagent
In []:
Reactant = np.zeros(steps)
Reactant[0:20] = 1.

Reaction

\[\phi_{1} + R \rightarrow K_{i} \phi_{2} \]

\[\partial(\phi_{2})/\partial t = K_{1} \times [\phi_{1}] \times [R] \]

In []:

K1=1E-3

I initialize the array of the detected signal by placing the detector at -3 from the right edge of the simulation adding the values of all the rows of the column -3

In []:

detector_phi1 = [np.sum(phi1_2D[:,,-3])]
detector_phi2 = [np.sum(phi2_2D[:,,-3])]
detector_phiR = [np.sum(phiR_2D[:,,-3])]

Now I define the functions to solve the differential equations.

In []:

def solve1():
 global phi1_2D
 phi1_value = phi1_2D.reshape(nx*3*ny*3)
 phi1.setValue(phi1_value)
 eqX.solve(var=phi1, dt=timeStepDuration, solver = DefaultAsymmetricSolver())
 phi1_2D = np.asarray(phi1).reshape((int(nx*3),int(ny*3)))
 phi1_2D = reflect(phi1_2D)
 phi1_2D[:,2:] = 1E-14
 phi1_2D[:,1] = phi1_2D[:,1]

In []:

def solve2():
 global phi2_2D
 phi2_value = phi2_2D.reshape(nx*3*ny*3)
 phi2.setValue(phi2_value)
 eqX.solve(var=phi2, dt=timeStepDuration, solver = DefaultAsymmetricSolver())
 phi2_2D = np.asarray(phi2).reshape((int(nx*3),int(ny*3)))
 phi2_2D = reflect(phi2_2D)
 phi2_2D[:,2:] = 1E-14
 phi2_2D[:,1] = phi2_2D[:,1]
def solveR():
 global phiR_2D
 phiR_value = phiR_2D.reshape(nx*3*ny*3)
 phiR.setValue(phiR_value)
 eqX.solve(var=phiR, dt=timeStepDuration, solver=DefaultAsymmetricSolver())
 phiR_2D = np.asarray(phiR).reshape((int(nx*3), int(ny*3)))
 phiR_2D = reflect(phiR_2D)
 phiR_2D[:, -2:] = 1E-14
 phiR_2D[:, 1] = phiR_2D[:, -1]

numerical solution cycles

I use multithreading in order to speed up the simulations

In []:

```python
from threading import Thread
```
In []:

```python
for step in range(steps):
    u = Poiseuille_flows(F[step],u)
u_1D = u.reshape(nx*3*ny*3)
v_1D = v.reshape(nx*3*ny*3)
velocity_value_new = np.vstack((u_1D,v_1D))
V.setValue(velocity_value_new)

#source
phi1_2D[xS,yS] = phi1_2D[xS,yS] + Source[step]
phiR_2D[xR,yR] = phiR_2D[xR,yR] + Reactant[step]

#reaction
phi1r_2D = phi1_2D * phiR_2D * K1
phi1_2D = phi1_2D - phi1r_2D
phiR_2D = phiR_2D - phi1r_2D
phi2_2D = phi2_2D + phi1r_2D

#solve
    t1 = Thread(target=solve1, args=())
t2 = Thread(target=solveR, args=())
t3 = Thread(target=solve2, args=())
    t1.start()
t2.start()
t3.start()
    t1.join()
t2.join()
t3.join()

#detector
detector_phi1 = np.append(detector_phi1,np.sum(phi1_2D[:,-4])) #signal phi1
detector_phiR = np.append(detector_phiR,np.sum(phiR_2D[:,-4])) #signal phiR
detector_phi2 = np.append(detector_phi2,np.sum(phi2_2D[:,-4])) #signal phi2
```

Now I save results

In []:

```python
detected_1 = np.vstack((tempo,detector_phi1))
detected_2 = np.vstack((tempo,detector_phi2))
detected_R = np.vstack((tempo,detector_phiR))
np.savetxt('Detector_1.txt', detected_1.T, delimiter=',')
np.savetxt('Detector_2.txt', detected_2.T, delimiter=',')
np.savetxt('Detector_R.txt', detected_R.T, delimiter=',')
```

Now I load UV-vis Spectrum of the molecular messenger
In []:
```
UVvis = np.loadtxt('UVvis.csv', delimiter=',')
```

I calculate the total mocular messenger concentration (unreacted + quenched) and then I calculate the intensity od absorbance according to the UVvis spectrum

In []:
```
conc_tot = (detector_phi1+detector_phi2)
ABS = conc_tot * UVvis[idx_max,1]
```

Reaction induces fluorescence quencing

The Stern-Volmer equation describes the kinetics of the phenomenon:

\[
\frac{I_0}{I} = 1 + K_q \tau \cdot [Q]
\]

In []:
```
R = 8.314472E-3  #L Pa K⁻¹ mol⁻¹
T = 300  #K
kq = 8*R*T/(3*nu)  #L s⁻¹ mol⁻¹
tau = 0.01  #s

fluo = conc_tot*fluo_phi1[np.argmax(fluo_phi1[:,1]),1]/(1+kq*tau*detector_phi2)

f, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.set_ylabel('ABS')
ax2.set_ylabel('fluor detected')
ax2.set_xlabel('time steps')
ax1.plot(ABS)
ax2.plot(fluo)
f.subplots_adjust(hspace=0)
plt.show()
```