Supporting information for

Unveiling Chemical Reactivity and Oxidation of 1T Phased Group VI Disulfide

Qiang Li, †,a Li Shi, †,a Ruchun Wu,*b Chongyi Lin,a Xiaowan Bai,a Yixin Ouyang,a Bhumi A. Baraiya,c Prafulla K. Jha† and Jinlan Wang,*a

a. School of Physics, Southeast University, Nanjing 211189, China.
b. School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning, Guangxi 530006, China.
c. Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002, India.

*E-mail: wurc2015@163.com; jlwang@seu.edu.cn.
†These authors contributed equally to this work.
Table of Contents

1. Band structures of MS$_2$... 3
2. Computational models .. 4
3. Pristine surface ... 5
 3.1 H$_2$O adsorption on pristine surfaces of MS$_2$ 5
 3.2 O$_2$ adsorption on pristine surfaces of MS$_2$ 6
4. Sulfur vacancy ... 7
 4.1 H$_2$O adsorption on sulfur vacancy sites of MS$_2$ 7
 4.2 O$_2$ adsorption on sulfur vacancy sites of MS$_2$ 8
5. O-doped surface ... 10
 5.1 O$_2$ and H$_2$O adsorption on O-doped HfS$_2$ and ZrS$_2$ surfaces 10
 5.2 O-doped TiS$_2$ surface ... 12
6. Edges .. 13
 6.1 H$_2$O adsorption on edge M sites of MS$_2$ 13
 6.2 O$_2$ adsorption on edge M sites of MS$_2$ 14
 6.3 Formation of TiO$_x$... 15
7. Appendix ... 16
1. Band structures of MS$_2$

Figure S1. Band structure of TiS$_2$ at GGA-PBE level.

Figure S2. Band structure of ZrS$_2$ at GGA-PBE level.
2. Computational models

Figure S3. Computational models of HfS$_2$ (same models are used for TiS$_2$ and ZrS$_2$) for the surface and edge (with 50% S coverage) calculations with cell size of 4*4.
3. Pristine surface

3.1 H_2O adsorption on pristine surfaces of MS_2

Figure S4. Adsorption structures and energies of H_2O on pristine MS$_2$ (001) (M=Ti, Zr and Hf) surfaces. The vdW corrections are used by PBE+D2.
3.2 O$_2$ adsorption on pristine surfaces of MS$_2$

![Figure S5. Adsorption structures and energies of O$_2$ on pristine MS$_2$ (001) (M=Ti, Zr and Hf) surfaces. The vdW corrections are used by PBE+D2.](image)

![Figure S6. Direct surface oxidation on pristine TiS$_2$ (001) surface, Ti, S and O are marked in grey, yellow and red respectively.](image)
4. Sulfur vacancy

4.1 H$_2$O adsorption on sulfur vacancy sites of MS$_2$

Figure S7. Adsorption structures and energies of H$_2$O on a sulfur vacancy site of MS$_2$ (001) (M=Ti, Zr and Hf) surfaces. The vdW corrections are used by PBE+D2.

Figure S8. Proposed reaction pathway of water oxidation process at a TiS$_2$ surface vacancy site, the numbers in blue are calculated kinetic barriers for SH formation and H2S formation.
Figure S9. Proposed reaction pathway of water oxidation process at a ZrS$_2$ surface vacancy site. The number in blue is calculated kinetic barrier for SH formation. The formation of H$_2$S is energy unfavorable by 0.79 eV. The structures are very similar with the case of HfS$_2$ as shown in Figure 2b.

4.2 O$_2$ adsorption on sulfur vacancy sites of MS$_2$

Figure S10. Adsorption structures and energies of O$_2$ on a sulfur vacancy site of MS$_2$ (001) (M=Ti, Zr and Hf) surfaces. The vdW corrections are used by PBE+D2. Charge transfer from O$_2$ to MS$_2$ is analyzed by Bader charge analysis.
Figure S11. Structure evolution of O$_2$ adsorbed at a sulfur vacancy site. The structures shown in the Figure are examples from HfS$_2$, but can be applied to TiS$_2$ and ZrS$_2$ as well.

Figure S12. The shrink of lattice site into the inner part of the MS$_2$ comparing with initial S site (shadowed yellow) by O substitution, and O$_2$ and H$_2$O may attack these surrounding metals.
5. O-doped surface

5.1 O_2 and H_2O adsorption on O-doped HfS$_2$ and ZrS$_2$ surfaces

Figure S13. Side and top views of H_2O (left side) and O_2 (right side) adsorption on an O-doped HfS$_2$ surface.

Figure S14. Side and top views of H_2O (left side) and O_2 (right side) adsorption on an O-doped ZrS$_2$ surface.
Figure S15. Proposed reaction pathway of O$_2$ induced oxidation on an O doped HfS$_2$ surface.
Figure S16. Proposed reaction pathway of H\textsubscript{2}O induced oxidation on an O doped HfS\textsubscript{2} surface.

Figure S17. Geometry optimization of an S\textsubscript{2} dimer on the O doped HfS\textsubscript{2} surface.

5.2 O-doped TiS\textsubscript{2} surface

Figure S18. Geometry optimization of H\textsubscript{2}O adsorption on an O doped TiS\textsubscript{2} surface and similar results can be found for non-polar O\textsubscript{2} adsorption.
6. Edges

6.1 H$_2$O adsorption on edge M sites of MS$_2$

Figure 20. Proposed reaction pathways of H$_2$O induced oxidation at TiS$_2$ edge sites with 50% S coverage. The numbers denote for energy barriers of each step. All the energies and kinetic barriers are obtained from ref. 16 [J. Phys. Chem. C 2015, 119, 15707].
Figure 21. Proposed reaction pathways of H$_2$O induced oxidation at ZrS$_2$ edge sites with 50% S coverage. The numbers denote for energy barriers of each step.

6.2 O$_2$ adsorption on edge M sites of MS$_2$

Figure 22. Proposed reaction pathways of O$_2$ induced oxidation at TiS$_2$ edge sites with 50% S coverage. The numbers denote for energy barriers of each step.
Figure 23. Proposed reaction pathways of O$_2$ induced oxidation at ZrS$_2$ edge sites with 50% S coverage. The numbers denote for energy barriers of each step.

6.3 Formation of TiO$_x$

Figure 24. The adsorption of O$_2$ and H$_2$O at oxidized TiS$_2$ edge, the x ranges from 0-2, denotes as TiS$_3$, TiS$_2$O$_1$ and TiS$_1$O$_2$ respectively. The oxidized area is in shadow and TiO$_3$ can be seen in Figure 4 from the main text.
7. Appendix

Figure 25. O_2 adsorption on TiS$_2$ S edge sites with 50% S coverage.

Figure 26. O_2 adsorption on an O-doped HfS$_2$ surface.

Table S1. Bond length of M-S in pristine MS$_2$, and M-O in O doped MS$_2$.

<table>
<thead>
<tr>
<th>Bond length (Å)</th>
<th>M-S</th>
<th>M-O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hf</td>
<td>2.55</td>
<td>2.10</td>
</tr>
<tr>
<td>Zr</td>
<td>2.57</td>
<td>2.13</td>
</tr>
<tr>
<td>Ti</td>
<td>2.45</td>
<td>1.98</td>
</tr>
</tbody>
</table>
Table S2. Adsorption energies of O$_2$ and H$_2$O on various sites of MS$_2$, units are in eV. Adsorption structures can be seen in each part of the supporting information.

<table>
<thead>
<tr>
<th></th>
<th>MS$_2$</th>
<th>O$_2$</th>
<th>H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine surface</td>
<td>TiS$_2$</td>
<td>-0.07</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>ZrS$_2$</td>
<td>-0.06</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>HfS$_2$</td>
<td>-0.07</td>
<td>-0.14</td>
</tr>
<tr>
<td>Sulfur vacancy</td>
<td>TiS$_2$</td>
<td>-2.48</td>
<td>-0.84</td>
</tr>
<tr>
<td></td>
<td>ZrS$_2$</td>
<td>-4.03</td>
<td>-1.14</td>
</tr>
<tr>
<td></td>
<td>HfS$_2$</td>
<td>-4.84</td>
<td>-1.44</td>
</tr>
<tr>
<td>O-doped surface</td>
<td>TiS$_2$</td>
<td>0.58</td>
<td>-0.64</td>
</tr>
<tr>
<td></td>
<td>ZrS$_2$</td>
<td>0.53</td>
<td>-0.61</td>
</tr>
<tr>
<td></td>
<td>HfS$_2$</td>
<td>0.58</td>
<td>-0.64</td>
</tr>
<tr>
<td>edge</td>
<td>TiS$_2$</td>
<td>-0.72</td>
<td>-0.76</td>
</tr>
<tr>
<td></td>
<td>ZrS$_2$</td>
<td>-0.92</td>
<td>-0.90</td>
</tr>
<tr>
<td></td>
<td>HfS$_2$</td>
<td>-0.42</td>
<td>-1.11</td>
</tr>
</tbody>
</table>