Vapour permeation measurements with free-standing nanomembranes

Petr Dementyev*, Timo Wilke, Daniil Naberezhnyi, Daniel Emmrich, Armin Gölzhäuser

Bielefeld University, Faculty of Physics, 33615 Bielefeld, Germany
dementyev@physik.uni-bielefeld.de

Fig. SM1. Photograph of the high-vacuum permeation setup. To navigate the reader, some of the system components are indicated similar to Fig. 1.
Fig. SM2. (a) Helium ion micrograph of the calibration nanoaperture. It was drilled in a 100-nm-thick silicon nitride window (Silson Ltd.) by a focused helium ion beam [1]. The area of the opening is determined from the image to be 19400 nm2. The gas transmission probability α is calculated using the approximation for short circular ducts as follows [2]:

$$\alpha = \frac{1}{1 + \frac{3l}{8r}}; \quad \frac{l'}{l} = 1 + \frac{1}{3 + \frac{3l}{7r}}$$

where l is the length of the duct, and r is the radius. Deducing the effective r from the area of the aperture, one obtains α equal to 0.62.

(b) Helium ion micrograph of the nanohole which was placed into the membrane cell to verify the equality between the sample and the reference inlets. Its area equals to 18300 nm2 and the transmission probability is obtained to be 0.61. The two apertures were compared by recording QMS signals for different gases as a function of applied feed pressure. The discrepancy in corresponding intensity/flow rate slopes was found to be less than 10% indicating the accuracy of the system.

Fig. SM3. QMS response as a function of the gas flow rates. The measurements were done with the aperture depicted in Fig. SM2a upon increasing the upstream pressure. The flow rate is determined in accordance with the above described gas transmission probability.
Fig. SM4. Schematic of the sample assembly. The fixture is analogous to that used in [3]. A nanomembrane is suspended over a holey silicon nitride window and is kept tightly by van der Waals forces [4]. The silicon chip is fixed onto a copper disc with an epoxy glue, and the leak-tight connection is achieved by securing the disc between two conflat flanges. The reference nanoaperture is mounted alike.

Fig. SM5. Water coverage as a function of relative pressure. \(\theta_{\text{mono}} \) and \(\theta_{\text{multi}} \) were calculated within the developed model for the indicated values of \(L_0 \). \(\theta_{\text{total}} \) stands for the total surface coverage, i.e. \(\theta_{\text{mono}} + \theta_{\text{multi}} \).
Table SM1. System components. Designations are identical to those shown in Fig. 1.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Description</th>
<th>Supplier</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Pumps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP1</td>
<td>Oil Sealed Rotary Vacuum Pump</td>
<td>Edwards, UK</td>
<td>RV8 (>10 years old)</td>
</tr>
<tr>
<td>RP2</td>
<td>Chemical Resistant Scroll Pump</td>
<td>Edwards, UK</td>
<td>nXDS15iC (brand new)</td>
</tr>
<tr>
<td>TMP1</td>
<td>Turbomolecular Pump</td>
<td>Leybold-Heraeus, Germany</td>
<td>TURBOVAC TMP-150 (>10 years old)</td>
</tr>
<tr>
<td>TMP2</td>
<td>HiCube 80 Eco Pumping Station incorporating Turbomolecular Pump and Backing Pump</td>
<td>Pfeiffer Vacuum Technology AG, Germany</td>
<td>HiPace 80 (brand new) MVP 015-4 (brand new)</td>
</tr>
<tr>
<td>Valves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1-V5</td>
<td>Chemical Resistant Angle Valve</td>
<td>SMC Corporation, Japan</td>
<td>XMH-16C-XQ1A (brand new)</td>
</tr>
<tr>
<td>V6-V10</td>
<td>Stainless Steel Integral Bonnet Needle Valve</td>
<td>Swagelok, USA</td>
<td>SS-ORS3MM (brand new)</td>
</tr>
<tr>
<td>V11</td>
<td>Stainless Steel High Flow Metering Valve</td>
<td>Swagelok, USA</td>
<td>SS-6L-MM (brand new)</td>
</tr>
<tr>
<td>GV</td>
<td>Ultra-High Vacuum Gate Valve</td>
<td>VAT Group AG, Switzerland</td>
<td>A571030 (>10 years old)</td>
</tr>
<tr>
<td>AV1</td>
<td>Easy Close All-Metal Angle Valve</td>
<td>VAT Group AG, Switzerland</td>
<td>54032-GE02 (brand new)</td>
</tr>
<tr>
<td>AV2</td>
<td>Copper Seal Angle Valve</td>
<td>Nor-Cal Products, Inc., USA</td>
<td>CSV-504400 (brand new)</td>
</tr>
<tr>
<td>Pressure Gauges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG1</td>
<td>Ion Gauge</td>
<td>Arun Microelectronics Ltd, UK</td>
<td>AIG17 (>10 years old)</td>
</tr>
<tr>
<td>PG2</td>
<td>Pirani/Cold Cathode Gauge</td>
<td>Pfeiffer Vacuum Technology AG, Germany</td>
<td>PKR 360 (brand new)</td>
</tr>
<tr>
<td>PG3</td>
<td>Pirani/Capacitance Gauge</td>
<td>Pfeiffer Vacuum Technology AG, Germany</td>
<td>PCR 280 (brand new)</td>
</tr>
<tr>
<td>PG4</td>
<td>Baratron Capacitance Manometer</td>
<td>MKS Instruments, USA</td>
<td>626CS2MCE9 (brand new)</td>
</tr>
<tr>
<td>Detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QMS</td>
<td>Quadrupole Mass Spectrometer</td>
<td>Hiden Analytical, UK</td>
<td>HAL V RC PIC-RGA 1001 (>10 years old)</td>
</tr>
</tbody>
</table>
Solution of the Eqs. 10 and 11

1) Rearranging

\[\frac{n_0 L^3}{L_0^2} = \frac{x}{2(1-x)}, \]

one obtains:

\[L = \left(\frac{L_0^2}{2(1-x)} \right)^{\frac{1}{3}} = \left(\frac{L_0}{2y} \right)^{\frac{1}{3}}, \]

where \(y = x/(1-x) \).

2) The equation

\[\frac{n_0 + n_0 L^2 L}{L_0} = \frac{x}{(1-x)} \]

can be written in the form

\[L^3 - L^2 = L_0 \left(\frac{x}{(1-x)} - 1 \right) = L_0^2 (y - 1), \]

where \(y = x/(1-x) \).

This cubic equation can be solved using the Cardano formula. For simplicity, we denote

\[k = L_0^2 (y - 1) \]

and obtain:

\[L^3 - L^2 - k = 0, \]

which corresponds to a general form

\[L^3 + aL^2 + bL + c = 0 \]

with the coefficients \(a = -1, b = 0 \) and \(c = -k \).

Substituting with \(L = z - a/3 \), we obtain the depressed cubic, where the quadratic term equals to zero:

\[\left(z - \frac{a}{3} \right)^3 + a \left(z - \frac{a}{3} \right)^2 + b \left(z - \frac{a}{3} \right) + c = 0 \]

\[\left(z - \frac{a}{3} \right) \left(z^2 - \frac{2a}{3}z + \frac{a^2}{9} \right) + a \left(z^2 - \frac{2a}{3}z + \frac{a^2}{9} \right) + bz - \frac{1}{3}ab + c = 0 \]

\[\left(z^3 - \frac{2}{3}az^2 + \frac{a^2}{9}z - \frac{a^2}{3}z + \frac{1}{27}a^3 \right) + \left(az^2 - \frac{2}{3}a^2z + \frac{a^3}{9} \right) + bz - \frac{1}{3}ab + c = 0 \]

\[z^3 + \left(-\frac{2}{3}a - \frac{1}{3}a + a \right) z^2 + \left(\frac{1}{9}a^2 + \frac{2}{3}a^2 - \frac{2}{3}a^2 + b \right) z + \left(-\frac{1}{27}a^3 + \frac{1}{9}a^3 - \frac{1}{3}ab + c \right) = 0 \]

\[z^3 + \left(-\frac{1}{3}a^2 + b \right) z + \left(\frac{2}{27}a^3 - \frac{1}{3}ab + c \right) = 0 \]
Inserting the coefficients leads to:

\[z^3 - \frac{1}{3}z - \frac{2}{27} - k = 0, \]

where \(p = -\frac{1}{3} \) and \(q = -\frac{2}{27} - k \).

Now, one can calculate the discriminant:

\[
D = \left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3 = \frac{q^2}{4} + \frac{p^3}{27} = \left(\frac{-27 - k}{2}\right)^2 + \left(\frac{-3}{3}\right)^3 = \left(\frac{-2 - 27k}{2}\right)^2 + \left(\frac{-3}{3}\right)^3
\]

\[
= \left(\frac{-2 - 27k}{54}\right)^2 + \left(\frac{-1}{9}\right)^3 = \frac{4 - 108k + 729k^2}{2916} - \frac{1}{729} = \frac{4 - 108k + 729k^2}{2916} - \frac{4}{2916}
\]

\[
= \frac{729k^2 - 108k}{2916} = \frac{27k^2 - 4k}{108}
\]

Using the Cardano formula

\[
z = \sqrt[3]{\frac{-q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{\frac{-q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}
\]

we obtain:

\[
z = \sqrt[3]{\frac{2 + 27k}{54} + \frac{27k^2 - 4k}{108}} + \sqrt[3]{\frac{2 + 27k}{54} - \frac{27k^2 - 4k}{108}}
\]

Undoing the substitution \(L = z + 1/3 \), \(L \) is expressed as

\[
L = \sqrt[3]{\frac{2 + 27k}{54} + \frac{27k^2 - 4k}{108}} + \sqrt[3]{\frac{2 + 27k}{54} - \frac{27k^2 - 4k}{108}} + \frac{1}{3}
\]

where \(k = L_0^2(y - 1) \).

The final solution is written as following:

\[
L = \sqrt[3]{\frac{2 + 27L_0^2(y - 1)}{54} + \frac{27L_0^4(y - 1)^2 - 4L_0^2(y - 1)}{108}} + \sqrt[3]{\frac{2 + 27L_0^2(y - 1)}{54} - \frac{27L_0^4(y - 1)^2 - 4L_0^2(y - 1)}{108}} + \frac{1}{3}
\]
References

