Supplementary Information

Pinpointing the Active Site and Reaction Mechanism of CO Oxidation on NiO

Fang Wang, a Yuxing Xu, a Xingchen Liu, b Ya Liu, a Jie Liu a and Botao Teng a

a College of Chemistry and Life Sciences, Zhejiang Normal University, Key Lab of Advanced Catalytic Materials of Ministry of Education, Jinhua, 321004

b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
Table S1 Surface energies of NiO surfaces

<table>
<thead>
<tr>
<th>NiO surface</th>
<th>100</th>
<th>110</th>
<th>111</th>
<th>311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface energy (J/m²)</td>
<td>0.38</td>
<td>0.82</td>
<td>1.14</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Data from *New J. Chem.*, 2018, 42, 10791

Fig. S1 Morphology of NiO samples predicted by Wulff construction
TS searching Method and main parameters of lasp.in

Global pathway searching of CO oxidation on NiO catalysts by stochastic surface walking method was carried out by LASP package. The double-ended surface walking was adopted to connect the initial and the final structures obtained by DFT optimization. The transition state location method in LASP does not compute Hessian matrix explicitly, and requires only energy and force to identify transition state. All possible reaction pathways and the transition state location was set as 0.05e V/Å for the maximal force and 0.05 GPa for the maximal stress. The Brillouin zone was sampled using 2×2×1 Monkhorst-Pack k-points. The reaction barrier was calculated on the basis of the energy difference between the initial and transition states. Frequency analysis was carried out to verify a single imaginary one for the transition state structure.

The main parameters of the input file lasp.in were set as follows:

- potential vasp # energy calculated by VASP package
- explore_type ssw # select the PES sampling method
- Run_type 2 # 2 for DESW
- DESW.task optpath # optimizing pathway followed by TS search
- SSW.ftol 0.05 # maximal force of geometry convergence criteria
- CBD.TSftol 0.05 # maximal force for TS
- SSW.Rotftol 0.05 # final rotation accuracy