Supporting Information

Molecular Dynamics Study of Natural Rubber-Fullerene Composites: Connecting Microscopic Properties to Macroscopic Behavior

Wasinee Khuntawee^{1,2,3}, Thana Sutthibutpong^{1,3,4}, Saree Phongphanphanee^{1,3,5,6}, Mikko Karttunen^{7,8,9} and Jirasak Wong-ekkabut^{1,2,3,6*}

¹Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand ²Department of Physics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand ³Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand ⁴Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand ⁵Department of Material Science, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand ⁶ Specialized Center of Rubber and Polymer Materials for Agriculture and Industry (RPM), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand ⁷Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada ⁸Department of Applied Mathematics, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada ⁹The Centre of Advanced Materials and Biomaterials Research, the University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada

*Corresponding Authors. Tel +66-2562-5555 ext. 647335. E-mail: jirasak.w@ku.ac.th (Jirasak Wong-ekkabut)

1. Structure and interaction parameter

The united atom force filed of cis-1,4-polyisoprene was taken from the existing literatures ¹⁻⁴. The details of structure, bonded- and non-bonded-interactions are provided in Table S1.

 Table S1: United atom force field of cis-PI

$H_{3}C^{5}$ $H_{3}C^{10}$ T^{8} 9							
cis-1 4-nolvisonrene							
Atom	vne						
1		CH2					
2		CH0					
3		CH1					
4		CH2					
5		CH3					
Bonde	d interact	ion					
Rigid I	oond	k _b (kJmol ⁻¹ nm ⁻⁴)	$b_0 (nm)$				
1-2		5.43×10^{6}	0.151				
2-3		1.08×10^{7}	<107 0.134				
2-5		5.43×10 ⁶	0.151				
3-4		5.43×10 ⁶	0.151				
4-6		5.43×10 ⁶	0.153				
Angle	bending	k_{θ} (kJmol ⁻¹ rad ⁻²)	θ_0 (deg)				
1-2-3		374.0	125.9				
2-3-4		374.0	125.9				
3-4-6		481.16	111.65				
5-2-3		374.0	125.9				
4-6-7		481.16	111.65				
Torsions		$k_n(n=1,,6)$ (kJmol ⁻¹)					
4-6-7-8	3	3.598	-0.167	4.853	0.669	1.590	-0.502
2-3-4-6		3.598	-0.167	4.853	0.669	1.590	-0.502
3-4-6-7		-4.142	-2.594	-16.903	-0.293	-1.046	-0.795
Improper		k_{ϕ} (kJmol ⁻¹ rad ⁻²)	$\phi_0(\text{deg})$				
dihedral							
1-2-3-4		160	0				
<u> </u>			180				
<u>rton-bonucu interaction: Lennaru-Jones potentiai</u>							
CUO	CHO	0 00252	C12 2 70210 10-6				
		0.00232	3./9310×10 ⁻⁶				
		0.00232	5./9510×10 ⁻⁰				
		0.00303	1.50419×10 ⁻³				
CH0		0.00/50	2.23034×10-5				
CHI	CHI	0.00252	3.79310×10-6				
CH1 CH2 0.		0.00505	1.50419×10-5				
CHI	CH3	0.00750	2.23034×10-5				
CH2	CH2	0.00650	2.70034×10 ⁻⁵				
CH2 CH3		0.01012	4.20052×10 ⁻⁵				
CH3	CH3	0.01573	6.53158×10 ⁻⁵				

2. System setup and stability

	Number of C60	Number of <i>cis</i> -	Simulation	
	molecule	PI chain	time (µs)	
0	0	200	7.0	
0.5	3	200	5.0	
1	5	200	5.0	
2	11	200	5.0	
4	21	200	5.0	
6	32	200	5.0	
8	43	200	5.0	
16	85	200	5.0	
32	171	200	8.3	
64	341	200	6.6	

Table S2: Number of molecules and the simulation time

Figure S1: Autocorrelations of rubber chains (a) R_0 and (b) R_g are determined by $C(t) = \langle R(\xi)R(\xi + t) \rangle_{\xi, \text{ where } \xi}$ is the time origin and $\langle \rangle$ is the average over ξ ^{5, 6}.

[((4)]	Autocorrelation relaxation time (ns)			
	\mathbf{R}_{0}	$\mathbf{R}_{\mathbf{g}}$		
0	58	79		
0.5	81	93		
1	80	132		
2	101	81		
4	144	191		
6	87	87		
8	123	121		
16	111	154		
32	157	133		
64	149	125		

	Table S3:	Autocorrelation	relaxation	time of	$f R_0$	and Rg
--	-----------	-----------------	------------	---------	---------	--------

Figure S2: The initial structure of each simulation system; the C_{60} molecules and *cis*-PI chains are initially random added in the simulation box (left) comparing to their final structure (right).

3. Force field testing

Properties	Simulation*	Refs.	Simulation details			
cis-PI in melts (200 chains PI, DP of PI=32)						
density (kg/m ³)	853.9±1.6	910 ^{a7}				
		825 ^{b2, 3}	DP of PI=20, united-atoms at			
			413 K			
		840 ^{b8}	<i>DP</i> of PI=24, all-atoms at 413			
			Κ			
		885.1 ± 0.2^{b6}	DP of PI=32, united-atom at			
			298 K and 1 bar			
$< R_0^2 > (nm^2)$	12.85±0.41	14.10 ± 0.20^{b6}	DP of PI=32, united-atom at			
			298 K and 1 bar			
$< R_g^2 > (nm^2)$	2.07±0.04	2.28 ± 0.5 ^{b6}	DP of PI=32, united-atom at			
			298 K and 1 bar			
<r0<sup>2>/<rg<sup>2></rg<sup></r0<sup>	6.20	6.18 ^{b6}	DP of PI=32, united-atom at			
			298 K and 1 bar			
Bulk modulus (GPa)	1.37±0.02	2.020 ^{a6, 9} ,				
		1.95 ^{b6} ,	DP of PI=32, united-atom at			
			298 K and 1 bar			
Thermal expansion	7.80±0.15	6.1 ^{a 6, 10, 11} ,				
$(10^{-4} \cdot K^{-1})$						
		6.6 ^{b 6}	DP of PI=32, united-atom at			
			298 K and 1 bar			

Table S4: Comparison of the structural and bulk properties of *cis*-PI in melts at 300 K to the previous studies.

* average from the last 1000 ns of current simulations

^aexperiment, ^b simulations

4. Mean Square Displacement (MSD)

Figure S3: The mean squared displacement (MSD), Eq 6. in the main text, (a) *cis*-PI and (b) C60 is determined by the deviation of the position of a molecule with respect to a reference position over time, $\langle r^2 \rangle$. The standard deviation is used for error estimate.

References

- M. Doxastakis, V. G. Mavrantzas and D. N. Theodorou, *The Journal of Chemical Physics*, 2001, **115**, 11339-11351.
- V. A. Harmandaris, M. Doxastakis, V. G. Mavrantzas and D. N. Theodorou, *The Journal* of Chemical Physics, 2002, 116, 436-446.
- D. V. Guseva, P. V. Komarov and A. V. Lyulin, *The Journal of Chemical Physics*, 2014, 140, 114903.
- D. V. Guseva, P. V. Komarov and A. V. Lyulin, *Journal of Polymer Science Part B: Polymer Physics*, 2016, 54, 473-485.
- 5. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess and E. Lindahl, *SoftwareX*, 2015, **1**, 19-25.
- P. Sharma, S. Roy and H. A. Karimi-Varzaneh, *The Journal of Physical Chemistry B*, 2016, **120**, 1367-1379.
- L. J. Fetters, D. J. Lohse and W. W. Graessley, *Journal of Polymer Science Part B: Polymer Physics*, 1999, **37**, 1023-1033.
- 8. Y. N. Pandey, A. Brayton, C. Burkhart, G. J. Papakonstantopoulos and M. Doxastakis, *The Journal of Chemical Physics*, 2014, **140**, 054908.
- 9. B. Holownia, *Rubber Chemistry and Technology*, 1975, 48, 246-253.
- A. V. Tobolsky and H. F. Mark, *Polymer science and materials*, John Wiley & Sons1971.
- 11. J. Brandrup, Polymer Handbook 4th Edition John Wiley & Sons, Inc. New York (1999).