High thermoelectric performance of Ag doped SnTe polycrystalline bulks via the synergistic manipulation of electrical and thermal transport

Lanling Zhao, Jun Wang, Jichao Li, Jian Liu, Chunlei Wang, Jiyang Wang and Xiaolin Wang

Fig. S1 Sn_{27}Te_{27} (a), Sn_{26}Te_{27} (b), and Sn_{26}AgTe_{27} (c) primitive cells used for the DFT calculations, and the 2-dimensional charge density difference for the (001) planes of Sn_{27}Te_{27} (d), Sn_{26}Te_{27} (e), and Sn_{26}AgTe_{27}(f). Blue and yellow colours represent loss and gain of electrons, respectively.

Fig. S2 Calculated electronic band structures for the Sn-deficient Sn_{26}Te_{27} (a) and silver-doped Sn_{26}AgTe_{27} (b) using Perdue Burke Ernzerhof generalized gradient approximations (PBE-GGA) based on density functional theory (DFT).
Fig. S3 Calculated partial electronic density-of-states (DOS) for SnTe (a, b) and Sn$_{26}$Te$_{27}$ (c, d) based on the DFT method.

Fig. S4 Calculated partial electronic density-of-states (DOS) for the silver doped Sn$_{26}$AgTe$_{27}$ based on the DFT method.
Fig. S5 Temperature dependence of the specific heat for the excess-silver-doped SnAg$_x$Te ($x = 0, 0.01, 0.03, 0.04, 0.10$) samples.

Fig. S6 Temperature dependence of the lattice thermal conductivity (κ_L) for the synthesized SnAg$_x$Te ($x = 0, 0.01, 0.03, 0.04, 0.10$) samples.