Supporting Information

Impact of the Chemical Nature and Position of Spacers on Controlling the Optical Properties of Silicon Quantum Dots

Mohammed Abdelhameed 1*, Shawkat Aly 1*, Partha Maity 2, Emad Manni 3, Omar F. Mohammed 2*, Paul A. Charpentier 1*

*Author to whom correspondence should be addressed.

Paul C. Charpentier: E-mail: pcharpentier@eng.uwo.ca; Phone: 519-661-3466; Fax: 519-661-3498.

Omar F. Mohammed: E-mail: omar.abdelsaboor@kaust.edu.sa; Phone 0128084491.
Figure S1. Absorption and excitation spectra of Am-SQD collected at room temperature; (λ_{em} and λ_{ex} indicated on graph).

Figure S2. Absorption and excitation spectra of Urea-SQD collected at room temperature; (λ_{em} and λ_{ex} indicated on graph).
Figure S3. Absorption and excitation spectra of Am-SQD-Flu collected at room temperature; (λ_{em} and λ_{ex} indicated on graph).

Figure S4. Absorption and excitation spectra of DiAm-SQD-Flu collected at room temperature; (λ_{em} and λ_{ex} indicated on graph).
Figure S5. Absorption and excitation spectra of Urea-SQD-Flu collected at room temperature; (λ_{em} and λ_{ex} indicated on graph).

Figure S6. Absorption and excitation spectra of SQD-FL collected at room temperature; (λ_{em} and λ_{ex} indicated on graph).
Figure S7. Absorption and excitation spectra of FTIC collected at room temperature; (λ_{em} and λ_{ex} indicated on graph).

Figure S8. Relative fluorescence intensity changes at different pH values.