Towards a Rational Design of Laser-Coolable Molecules: Insights from Equation-of-Motion Coupled-Cluster Calculations: Supporting Information

Maxim V. Ivanov^a, Felix H. Bangerter^{a,b} and Anna I. Krylov^a

 a Department of Chemistry, University of Southern California, Los Angeles, California, USA

 b Ludwig Maximilian University Munich, Munich, Bavaria, Germany

This document contains a detailed summary of the results from EOM-CC calculations (Dyson orbitals, equilibrium bond lengths, excitation energies, oscillator strengths), their comparison with available experimental data, and quantum defects data.

FIG. S1: Dyson orbitals of CaOH, SrOH and BaOH (isovalue = 0.02).

TABLE S1: Comparison between the experimental T_e value and adiabatic (E_{ex}^{ad}) and vertical (E_{ex}^{vert}) excitation energies (in eV) computed using EOM-EA-CCSD. The experimental values for MF and MOH are from Refs. 1 2, respectively.

Mo	lecule	2	$X^2\Sigma^+ \rightarrow$	$A^2\Pi$		$X^2\Sigma$	$^+ \rightarrow I$	$B^2\Sigma^+$
М	R	$T_e[A_{1/2}^2]$	$T_e[A_{3/2}^2]$	E_{ex}^{ad}	E_{ex}^{vert}	T_e	E_{ex}^{ad}	E_{ex}^{vert}
Ca	F	2.044	2.053	2.097	2.100	2.336	2.436	2.437
	OH	1.979	1.988	2.027	2.034	2.234	2.336	2.341
C.	F	1.868	1.903	1.903	1.905	2.141	2.179	2.179
Sr	OH	1.803	1.836	1.830	1.835	2.030	2.066	2.069
Ba	F	1.444	1.522	1.510	1.511	1.744	1.754	1.765
Da	OH	1.435	1.513	1.471	1.471	1.637	1.639	1.642

Molecule	Bond Length	$X^2\Sigma^+$	$A^2\Pi$	$B^2\Sigma^+$	$X^2 \Sigma^+ - A^2 \Pi$	$X^2\Sigma^+ - B^2\Sigma^+$
CaE	calc.	1.966	1.947	1.961	-0.019	-0.005
Uar	$r_e(\text{Ref. 1})$	1.967	1.952	1.955	-0.015	-0.012
CoOH	calc.	1.988	1.962	1.964	-0.026	-0.024
CaOII	$r_e(\text{Ref. }3)$	1.975	1.953	_	-0.021	_
	calc.	2.096	2.079	2.096	-0.017	0.000
SIL	$r_e(\text{Ref. 1})$	2.075	_	2.080	_	0.005
SrOH	calc.	2.120	2.097	2.102	-0.024	-0.018
51011	$r_0(\text{Ref. } 4)$	2.111	2.091	2.098	-0.020	-0.013
BoF	calc.	2.195	2.209	2.237	0.014	0.042
Dar	$r_e(\text{Ref. 1})$	2.163	2.183	2.208	0.020	0.045
BaOH	calc.	2.223	2.226	2.245	0.003	0.022
	$r_0(\text{Ref. 5})$	2.200	2.237	2.231	0.037	0.031

TABLE S2: Comparison of the equilibrium bond lengths (in Å) calculated using EOM-EA-CCSD with the available experimental values (r_0 and r_e).

TABLE S3: Comparison of the calculated electron affinities (EA, eV) with the experimental values for selected species with the largest EAs. The calculated EAs were taken as the difference between the total electronic energies at the equilibrium geometries of the neutral and anionic states calculated using EOM-IP-CCSD (with anionic reference) and CCSD, respectively.

Molecule	Calc.	Exp.	Source
F	3.318	3.401	Ref. 6
NCO	3.652	3.609	Ref. 7
NC	3.989	3.862	Ref. 7
OBO	4.465	4.46	Ref. 8

Mo	lecule	Mullilion's 7	Natural 7	$X^2\Sigma$	$^+ \rightarrow$	$A^2\Pi$	$X^{2}\Sigma^{-}$	\rightarrow	$B^2\Sigma^+$	$X^2\Sigma^2$	$^+ \rightarrow$	$A^{\prime 2}\Delta$
Μ	R	Mullikell S Z		E_{ex}	f_{osc}	μ^{IF}	E_{ex}	f_{osc}	μ^{IF}	E_{ex}	f_{osc}	μ^{IF}
	Н	1.155	1.660	1.831	0.197	2.096	2.119	0.114	1.484	2.616	0.000	0.000
	CCH	1.262	1.862	1.995	0.224	2.141	2.221	0.156	1.692	2.704	0.000	0.000
	OH	1.395	1.871	2.034	0.261	2.287	2.341	0.197	1.854	2.981	0.000	0.000
Ca	F	1.482	1.860	2.100	0.265	2.268	2.437	0.196	1.811	2.940	0.000	0.000
	NCO	1.539	1.899	2.088	0.235	2.144	2.282	0.173	1.760	2.756	0.000	0.000
	NC	1.545	1.899	2.104	0.223	2.082	2.281	0.158	1.680	2.675	0.000	0.000
	OBO	1.615	1.919	2.154	0.240	2.134	2.350	0.180	1.770	2.760	0.000	0.000
	Н	1.198	1.698	1.694	0.224	2.322	1.846	0.120	1.632	2.200	0.000	0.000
	CCH	1.460	1.887	1.813	0.233	2.292	1.960	0.164	1.846	2.292	0.000	0.000
	OH	1.424	1.895	1.835	0.275	2.473	2.069	0.205	2.011	2.497	0.000	0.000
Sr	F	1.510	1.882	1.905	0.277	2.437	2.179	0.205	1.959	2.474	0.000	0.000
	NCO	1.560	1.926	1.901	0.244	2.290	2.040	0.182	1.910	2.345	0.000	0.000
	NC	1.583	1.922	1.913	0.228	2.206	2.048	0.168	1.831	2.296	0.000	0.000
	OBO	1.637	1.944	1.973	0.251	2.277	2.125	0.190	1.910	2.357	0.000	0.000
	Н	1.236	1.756	1.289	0.115	1.905	1.416	0.100	1.701	1.272	0.000	0.000
	CCH	1.550	1.900	1.300	0.109	1.849	1.486	0.131	1.897	1.302	0.000	0.000
	OH	1.430	1.891	1.471	0.240	2.580	1.642	0.179	2.109	1.519	0.000	0.000
Ba	F	1.508	1.878	1.511	0.221	2.443	1.765	0.182	2.050	1.462	0.000	0.000
	NCO	1.589	1.926	1.402	0.135	1.979	1.562	0.145	1.948	1.324	0.000	0.000
	NC	1.615	1.929	1.334	0.099	1.738	1.540	0.130	1.855	1.260	0.000	0.000
	OBO	1.649	1.944	1.481	0.146	2.009	1.654	0.149	1.917	1.315	0.000	0.000

TABLE S4: Compilation of Mulliken's and natural charge of the metal (Z), excitation energy $(E_{ex}, \text{ eV})$, oscillator strength (f_{osc}) , transition dipole moment $(\mu^{IF}, \text{ au})$ of the three lowest-energy electronic transitions calculated using EOM-EA-CCSD.

FIG. S2: Oscillator strengths of two bright lowest-energy transitions (as indicated) computed using EOM-EA-CCSD.

TABLE S5: Equilibrium bond lengths between the metal M and the directly connected atom of the ligand (R) in the three lowest energy electronic states and corresponding bond length changes (ΔR) between the lowest two excited states and the ground state calculated using EOM-EA-CCSD.

Mo	lecule		R, \mathring{A}		ΔF	R, Å
М	R	$X^2\Sigma^+$	$A^2\Pi$	$B^2\Sigma^+$	$X^2 \Sigma^+ - A^2 \Pi$	$X^2 \Sigma^+ - B^2 \Sigma^+$
	Н	2.014	1.977	1.969	-0.034	-0.045
	CCH	2.331	2.296	2.294	-0.035	-0.036
	OH	1.988	1.962	1.964	-0.026	-0.024
Ca	F	1.966	1.947	1.961	-0.019	-0.005
	NCO	2.157	2.128	2.131	-0.029	-0.026
	NC	2.207	2.182	2.187	-0.025	-0.020
	OBO	2.062	2.041	2.049	-0.020	-0.013
	Н	2.163	2.130	2.125	-0.034	-0.038
	CCH	2.480	2.446	2.448	-0.034	-0.032
	OH	2.120	2.097	2.102	-0.024	-0.018
Sr	F	2.096	2.079	2.096	-0.017	-0.000
	NCO	2.301	2.275	2.279	-0.026	-0.022
	NC	2.354	2.331	2.338	-0.023	-0.016
	OBO	2.203	2.186	2.197	-0.016	-0.006
	Н	2.260	2.309	2.310	0.049	0.049
	CCH	2.600	2.616	2.639	0.016	0.039
	OH	2.223	2.226	2.245	0.003	0.022
Ba	F	2.195	2.209	2.237	0.014	0.042
	NCO	2.423	2.454	2.465	0.031	0.042
	NC	2.482	2.538	2.538	0.056	0.057
	OBO	2.323	2.384	2.384	0.061	0.061

TABLE S6: FCFs for the decay transitions from the $A^2\Pi$ and $B^2\Sigma^+$ states to $X^2\Sigma^+$ in MOH molecules calculated with EOM-EA-CCSD within double-harmonic parallel-mode approximation using normal mode and frequencies of the ground state.

Transition	Ca	OH	Sr(HC	BaOH		
Transmon	$A^2\Pi$	$B^2\Sigma^+$	$A^2\Pi$	$B^2\Sigma^+$	$A^2\Pi$	$B^2\Sigma$	
0_{0}^{0}	0.9168	0.9285	0.9153	0.9477	0.8716	0.9224	
1^{0}_{1}	0.0796	0.0635	0.0810	0.0508	0.1197	0.0485	
1^{0}_{2}	0.0035	0.0067	0.0036	0.0014	0.0082	0.0175	

2. QUANTUM DEFECT THEORY FITS TO EOM-CC DATA

2.1.

Quantum defects in Ca^+ , Sr^+ , Ba^+

FIG. S3: Binding energies of Ca^+ , Sr^+ , and Ba^+ .

TABLE S7: Binding energies E_{nl} of Ca⁺, Sr⁺ and Ba⁺ in their valence states computed using EOM-EA-CCSD, and the corresponding quantum defects δ_l .

State	Ca^+	Sr^+	Ba^+
	E_{nl}		
ns	-11.88	-11.00	-9.97
(n-1)d	-9.79	-8.97	-9.18
np	-8.74	-8.00	-7.33
	δ_l		
ns	1.86	2.78	3.66
(n-1)d	0.64	1.54	2.56
np	1.50	2.39	3.27

2.2. Quantum defects in MR molecules

	0			1 0							
	$X^2\Sigma$	$A^2\Pi$	$B^2\Sigma$	$A^{\prime 2}\Delta$							
	CaR										
a	-41.7	-37.4	-43.3	-52.2							
b	-3.5	-3.5	-3.5	-3.5							
С	3.2	3.2	3.2	3.2							
δ_l	3.4	3.4	3.4	2.5							
SrR											
a	-41.2	-35.7	-41.1	-48.9							
b	-3.6	-3.6	-3.6	-3.6							
С	3.3	3.3	3.3	3.3							
δ_l	4.4	4.4	4.4	3.5							
		Bal	R								
a	-57.9	-62.8	-77.4	-68.4							
b	-3.6	-3.7	-3.7	-3.7							
c	3.4	3.4	3.4	3.4							
δ_l	5.5	5.5	5.6	4.6							

 TABLE S8: Coefficients obtained by fitting the natural charges to the EOM-CC binding energies using second-order polynomial.

TABLE S9: Coefficients obtained by fitting Mulliken's charges to the EOM-CC binding energies using second-order polynomial.

	$X^2\Sigma$	$A^2\Pi$	$B^2\Sigma$	$A^{\prime 2}\Delta$							
	CaR										
a	-6.0	-7.1	-8.0	-10.1							
\mathbf{b}	-2.5	-2.7	-2.6	-2.7							
\mathbf{c}	2.6	2.3	2.2	2.1							
δ_l	2.5	2.6	2.7	1.8							
SrR											
a	-7.4	-7.0	-8.0	-9.7							
\mathbf{b}	-2.6	-2.7	-2.7	-2.7							
\mathbf{c}	2.4	2.3	2.2	2.1							
δ_l	3.6	3.6	3.6	2.8							
		Bal	R								
a	-10.4	-11.9	-14.9	-12.9							
\mathbf{b}	-2.7	-2.8	-2.8	-2.8							
\mathbf{c}	2.3	2.2	2.1	2.2							
δ_l	4.9	4.9	5.0	4.0							

FIG. S4: Electron binding energies obtained with EOM-EA-CCSD versus Mulliken's charge of the metal.

FIG. S5: Quantum defects δ_l versus Mulliken's charge of the metal.

М	State	Н	CCH	OH	F	NCO	NC	OBO
	X	2.15	1.99	1.94	2.01	2.00	2.04	2.03
C_{α}	A	1.76	1.53	1.42	1.53	1.55	1.60	1.59
Ua	В	1.67	1.46	1.30	1.41	1.49	1.55	1.54
	A'	0.49	0.27	-0.01	0.20	0.32	0.42	0.40
	Х	3.05	2.89	2.83	2.90	2.90	2.94	2.93
\mathbf{Sr}	A	2.64	2.42	2.30	2.41	2.44	2.49	2.48
51	В	2.59	2.37	2.20	2.30	2.39	2.45	2.43
	A'	1.46	1.24	0.99	1.17	1.28	1.36	1.35
	Х	3.90	3.76	3.70	3.78	3.79	3.82	3.82
Ba	А	3.54	3.39	3.22	3.33	3.41	3.48	3.44
	В	3.50	3.33	3.14	3.23	3.35	3.41	3.38
	A'	2.55	2.39	2.20	2.35	2.43	2.50	2.49

TABLE S10: Quantum defects obtained using the natural charges.

TABLE S11: Quantum defects obtained using Mulliken's charges.

М	State	Н	CCH	OH	F	NCO	NC	OBO
	Х	2.44	2.43	2.33	2.32	2.31	2.34	2.30
C_{2}	Α	2.11	2.07	1.91	1.92	1.93	1.97	1.92
Ua	В	2.03	2.01	1.81	1.82	1.88	1.92	1.87
	A'	0.88	0.86	0.56	0.65	0.73	0.81	0.75
	Х	3.37	3.26	3.24	3.23	3.24	3.24	3.22
S r	А	3.03	2.88	2.82	2.82	2.84	2.87	2.83
51	В	2.98	2.83	2.74	2.73	2.80	2.83	2.78
	A'	1.87	1.72	1.56	1.62	1.71	1.76	1.71
	Х	4.28	4.10	4.13	4.13	4.12	4.12	4.11
Ba	А	3.99	3.79	3.74	3.75	3.79	3.83	3.78
	В	3.95	3.73	3.67	3.66	3.74	3.77	3.73
	A'	2.99	2.79	2.72	2.77	2.81	2.85	2.82

- ¹ Herzberg, G. *Molecular spectra and molecular structure: I. Spectra of diatomic molecules*, Vol. I; van Nostrand Reinhold: New York, 1950.
- ² Brazier, C. R.; Ellingboe, L. C.; Kinsey-Nielsen, S.; Bernath, P. F. Laser spectroscopy of alkaline earth monoalkoxide free radicals *J. Am. Chem. Soc.* **1986**, *108*, 2126–2132.
- ³ Li, M.; Coxon, J. A. Dye laser excitation studies of the $\tilde{A}^2\Pi(100)/(020)-X^2\Sigma^+(020)/(000)$ bands of CaOD: Analysis of the $\tilde{A}^2\Pi(100)\sim(020)$ Fermi resonance J. Chem. Phys. **1996**, 104, 4961–4977.
- ⁴ Yu, S.; Wang, J.-G.; Sheridan, P. M.; Dick, M. J.; Bernath, P. F. Laser spectroscopy of the $\tilde{A}^2\Pi$ - $\tilde{X}^2\Sigma^+ 0^0_0$ and $\tilde{C}^2\Pi$ - $\tilde{A}^2\Pi 0^0_0$ transitions of SrOD *J. Molec. Spect.* **2006**, *240*, 26–31.
- ⁵ Tandy, J. D.; Wang, J.-G.; Bernath, P. F. High-resolution laser spectroscopy of BaOH and BaOD: Anomalous spin-orbit coupling in the Ã²Π state J. Molec. Spect. 2009, 255, 63–67.
- ⁶ Blondel, C.; Delsart, C.; Goldfarb, F. Electron spectrometry at the μev level and the electron affinities of Si and F J. Phys. B 2001, 34, L281–L288.
- ⁷ Bradforth, S. E.; Kim, E. H.; Arnold, D. W.; Neumark, D. M. Photoelectron spectroscopy of CN⁻, NCO⁻, and NCS⁻ J. Chem. Phys. **1993**, 98, 800–810.
- ⁸ Zhai, H.-J.; Wang, L.-M.; Li, S.-D.; Wang, L.-S. Vibrationally resolved photoelectron spectroscopy of BO⁻ and BO₂⁻: A joint experimental and theoretical study J. Phys. Chem. A 2007, 111, 1030– 1035.