Structural features of selected protic ionic liquids based on a super-strong base.

Alessandro Triolo¹,*, Fabrizio Lo Celso², Carlo Ottaviani¹, Pengju Ji³, Giovanni Battista Appetecchi⁴, Francesca Leonelli⁵, Dean S. Keeble⁶ and Olga Russina⁷,*.

¹ Laboratorio Liquidi Ionici, Istituto Struttura della Materia, Consiglio Nazionale delle Ricerche, (ISM-CNR) Rome, Italy

² Department of Physics and Chemistry, Università di Palermo, Palermo, Italy.

³ Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China

⁴ ENEA, SSPT-PROMAS-MATPRO Technical Unit, Rome, Italy.

⁵ Department of Environmental Biology, University of Rome Sapienza, Rome, Italy

⁶ Diamond Light Source, Harwell Campus, Didcot OX11 0DE UK

⁷ Department of Chemistry, University of Rome Sapienza, Rome, Italy

Corresponding Authors: A. T. (triolo@ism.cnr.it); O.R. (olga.russina@uniroma1.it)
Density of [DBUH][IM14]. Experimental data have been modelled with a linear trend (continuous line):

\[\rho \text{ [g/cc]} = a \times T[K] + b, \text{ with } a = 0.001047 \times 10^{-6} \text{ K}^{-1} \text{ and } b = 1.891 \times 10^{-3} \text{ (R}^2=0.99994) \]
Viscosity.

Viscosity of [DBUH][IM14]. Experimental data have been modelled with the trend (continuous line):

\[\eta(\text{mPa s}) = \eta_0 \exp \left[\frac{B}{(T-T_0)} \right] \]

with \(\eta_0 = 0.070 \ (0.001) \ \text{mPa s} \), \(B=1172 \ (1) \ \text{K}^{-1} \), \(T_0=197 \ (1) \ \text{K} \).

\((R^2=0.99992) \)
Molar conductance of [DBUH][IM14]. Experimental data have been modelled with the trend (continuous line):

\[\Lambda (\text{S cm}^2 \text{mol}^{-1}) = \Lambda_o \exp \left[-\frac{B}{(T-T_0)} \right] \]

with \(\Lambda_o = 139 \) (3) S cm\(^2\) mol\(^{-1}\), \(B = 890 \) (2) K\(^{-1}\), \(T_0 = 208 \) (2) K. (\(R^2 = 0.99985 \))
Combined Distribution Function obtained from the MD study of an aprotic IL based on the [IM14] anion and the 1-octyl,3-methylimidazolium cation ([C8mim][IM14]), highlighting the structural features of the hydrogen bonding interactions therein between the anion and the acidic H atom between the two imidazolium Nitrogen atoms.

Figure SI-1