Two-dimensional infrared spectroscopy from the gas to liquid phase:
Density dependent J-scrambling, vibrational relaxation, and the onset of liquid character

Greg Ng Pack1,3, Matthew C. Rotondaro1,3, Parth P. Shah1,3, Aritra Mandal4, Shyamsunder Erramilli2,3, and L.D. Ziegler1,3*

1Department of Chemistry, Boston University, Boston, MA 02215 USA
2Department of Physics, Boston University, Boston, MA 02215 USA
3Photonics Center, Boston University, Boston, MA 02215 USA
4Department of Chemistry, University of Colorado, Boulder, CO 80303 USA

*Author to whom correspondence should be addressed: lziegler@bu.edu
2DIR spectra and CLS decays of N$_2$O in SF$_6$ at $\rho^* = 0.86$:

![2DIR spectra and CLS decays](image)

Figure S1. 2DIR spectra and corresponding CLS decays of N$_2$O ν_3 in SF$_6$ at $\rho^* = 0.86$. Red contours denote positive-going GSB-SE signals and blue contours denote negative-going ESA signals.
Hard sphere collision time determination:

The mean free time for a single N₂O molecule is calculated using a hard sphere model at the given state point density of SF₆ and the mean speed is based on a Maxwell-Boltzmann speed distribution for an ideal gas. The collision frequency, \(\nu_{\text{coll}} \), is given by:

\[
\nu_{\text{coll}} = N_A \rho_{SF_6} \pi (r_{SF_6} + r_{N_2O})^2 \frac{8RT}{\pi \mu_{N_2O}}
\]
(Eq. S8)

where \(N_A \) is the Avogadro constant \((6.022 \times 10^{23} \text{ mol}^{-1})\), \(\rho_{SF_6} \) is the respective density of SF₆⁻¹, \(r_{SF_6} = 2.326 \times 10^{-10} \text{ m}^2 \) and \(r_{N_2O} = 1.94 \times 10^{-10} \text{ m}^3 \) are the radii of SF₆ and N₂O, respectively, \(R \) is the universal gas constant \((8.3145 \text{ J mol}^{-1} \text{ K}^{-1})\), \(T \) is the temperature of the solution, and \(\mu_{N_2O} = 0.03382 \text{ kg mol}^{-1} \) is the reduced mass of N₂O. The mean free time between collisions is then calculated as the inverse of the collision frequency:

\[
\tau_{\text{coll}} = \frac{1}{\nu_{\text{coll}}}
\]
(Eq. S9)
FTIR spectra of N\(_2\)O in liquid SF\(_6\) (\(\rho^* = 1.87\)):

Figure S2. Observed (blue) FTIR spectrum of the \(\nu_3\) asymmetric stretch mode of N\(_2\)O in \(\rho^* = 1.87\) (liquid) SF\(_6\) (20\(^\circ\)C, 22 atm, 0.92\(T_c\), 0.60\(P_c\)). A sum of 2 Lorentzian fit (red) is overlaid with peaks centered at 2221 cm\(^{-1}\), the observed \(\nu_3\) peak maximum, and 2209 cm\(^{-1}\), the frequency of the red-shifted N\(_2\)O bending (\(\nu_2\)) hot band absorption (\(\nu_2 \rightarrow \nu_2 + \nu_3\)) to demonstrate the dominant Lorentzian character of this absorption feature.
Magic angle, one-color, pump-probe responses of the ν_3 $\nu = 1$ excited state of N$_2$O in SF$_6$:

Figure S3. Magic angle pump-probe spectrum of N$_2$O ν_3 in SF$_6$ at $\rho^* = 0.16$.

Figure S4. Magic angle pump-probe spectrum of N$_2$O ν_3 in SF$_6$ at $\rho^* = 0.30$.

Figure S5. Magic angle pump-probe spectrum of N$_2$O ν_3 in SF$_6$ at $\rho^* = 0.86$.
Figure S6. Magic angle pump-probe spectrum of N$_2$O ν_3 in SF$_6$ at ρ^* = 0.99.

Figure S7. Magic angle pump-probe spectrum of N$_2$O ν_3 in SF$_6$ at ρ^* 1.36.

Figure S8. Magic angle pump-probe spectrum of N$_2$O ν_3 in SF$_6$ at ρ^* 1.87.
Rate equations for this one-color N₂O ν₃ pump-probe response in SF₆ corresponding to mechanism:

The differential rate equations for the N₂O ν₃ pump-probe responses in SF₆ are given by:

\[
\frac{dN_{001}}{dt} = -\frac{N_{001}(t)}{T_1} \quad \text{(Eq. S1)}
\]

\[
\frac{dN_{100}}{dt} = \frac{N_{001}(t)}{T_1} - \frac{N_{100}(t)}{T_2} \quad \text{(Eq. S2)}
\]

\[
\frac{dN_{000}}{dt} = \frac{N_{100}(t)}{T_2} \quad \text{(Eq. S3)}
\]

The time-dependent populations within this model are given by:

\[
N_{001}(t) \propto e^{-t/T_1} \quad \text{(Eq. S4)}
\]

\[
N_{100}(t) \propto \frac{T_2}{T_2-T_1} e^{-t/T_2} - \frac{T_2}{T_2-T_1} e^{-t/T_1} \quad \text{(Eq. S5)}
\]

\[
N_{000}(t) \propto 1 - \frac{T_2}{T_2-T_1} e^{-t/T_2} + \frac{T_1}{T_2-T_1} e^{-t/T_1} \quad \text{(Eq. S6)}
\]

The corresponding normalized pump-probe signal at delay time t is correspondingly given by:

\[
\Delta OD(t) = C_1 e^{-k_1 t} - C_2 \left(\frac{k_1}{k_1-k_2} e^{-k_1 t} - \frac{k_1}{k_1-k_2} e^{-k_2 t} \right) \quad \text{(Eq. S7)}
\]

where \(C_1\) and \(C_2\) are proportional to the (00^00) \(\rightarrow\) (00^01) and (10^00) \(\rightarrow\) (10^01) absorption cross sections respectively, and \(k_1\) and \(k_2\) are the inverse lifetimes of the ν₃ and ν₁ N₂O states, respectively. The fit parameters, i.e., the coefficients and lifetimes, are given for all densities in Table 2.
Figure S9. Representative best-fit to the ν_3 resonant pump-probe response in $\rho^* = 0.86$ SF$_6$ and the component kinetics for the ν_3 vibrational energy relaxation and the subsequent ν_1 population build up
References:

1. NIST Chemistry WebBook. 2001 ed.; National Institute of Standards and Technology: Gaithersburg MD.