Supporting Information

Double aromaticity of B_{40} Fullerene: Induced magnetic field analysis of π and σ delocalization in boron cavernous structure

Nickolas D. Charistos^a and Alvaro Muñoz-Castro^b

^aAristotle University of Thessaloniki, Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Thessaloniki, Greece, 54 124.

^bLaboratorio de Química Inorgánica y Materiales Moleculares, Universidad Autonoma de Chile, Llano Subercaceaux 2801, San Miguel, Santiago, Chile.

Contents		Page
Figure S1	Contour maps of total, π , σ and core contributions to the induced magnetic field of B ₄₀ fullerene under two different orientations.	S2
Figure S2	$\pi\text{-type}$ orbitals of B_{40} fullerene and their corresponding maps of CMO contributions to the induced magnetic field	S3
Figure S3	Field lines of the magnetic field induced by the π and σ sets of orbitals of B ₄₀ fullerene. The external field is applied upwards.	S4
Tables S1 and S2	Dissected NICS $_{zz}$ values (ppm) of unique B $_3$ triangles 1 Å above and below the cage surface	S5

Figure S1. Contour maps of total, π , σ and core contributions to the induced magnetic field of B₄₀ fullerene under two different orientations. Left: the magnetic field is applied along the non-principal C_2 rotational axis; Right: the magnetic field is applied perpendicular to a B₆ unit.

Figure S2. π -type orbitals of B₄₀ fullerene and their corresponding maps of CMO contributions to the induced magnetic field under four different orientations (left) and their orientational averaged response (right).

Figure S3. Field lines of the magnetic field induced by the π and σ sets of orbitals of B₄₀ fullerene. The external field is applied upwards. Blue vectors denote shielding (downwards) response and red vectors denote deshielding (upwards) response. Color scale represents the magnitude of induced field $|B_{\pi}^{ind}|$ in μ Tesla.

the cage surf	ale			
B ₃ *	Total	π	σ	Core
а	-32.5	-11.2	-11.6	-9.7
b	-30.1	-11.1	-9.2	-9.8
С	-14.4	-5.7	2.8	-11.4
d	-21.6	-6.7	-4.6	-10.3
е	-34.6	-9.6	-15.8	-9.3
f	-28.7	-8.3	-10.6	-9.8
g	-34.1	-9.0	-15.5	-9.5

Table S1. Total and dissected $NICS_{zz}$ values (ppm) of unique B_3 triangles 1 Å above the cage surface

^{*}B₃ labelling as in Figure 1.

Table S2. Total and dissected NICS $_{zz}$ values (ppm) of unique B3 triangles 1 Å below the cage surface

0				
B ₃ *	Total	π	σ	Core
а	-52.1	-8.4	-24.7	-18.9
b	-45.9	-2.9	-23.8	-19.1
С	-39.2	5.9	-25.4	-19.8
d	-41.6	1.9	-24.0	-19.5
е	-51.6	-5.8	-26.9	-18.8
f	-46.4	-0.7	-26.7	-19.1
g	-53.4	-6.5	-27.9	-19.1

 *B_3 labelling as in Figure 1.