Supporting Information:

Layered nodal lines in halide carbides

Anh Pham*1,2,3, Frank Klose2,4, and Sean Li1

1School of Materials Science and Engineering, The University of New South Wales, Sydney NSW Australia
2The Australian Nuclear Science and Technology, Lucas Height NSW Australia.
3Centre for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37830 USA
4Guangdong Technion Israel Institute of Technology, Shantou, China.

In this Supporting Information, we first show the independence of the crystal structure and band structure with respect to the different value used in the mean field method PBEsol+U [1,2], to justify our calculation of using the results from the PBE functional [3]. All the calculations were done within the inclusion of the van-der-waals interaction within the DFT+D3 scheme [4]. Next, we show the show evolution of the Wannier charge centres for the two mirror eigenvalues corresponding with the two mirror planes k_z = 0 and k_z = 0.5 using the Wilson loop method [5, 6]. The band structure of different number of layers of Y_2C_2I_2 which demonstrates persistent 2D nodal line property protected by the k_z = 0 mirror plane. The crystal structure of the (010) edge state is shown Fig. S4. We also demonstrate that the 3D and 2D nodal line properties are also present in La_2C_2I_2 similar to Y_2C_2I_2 due to the existence of the k_z = 0 and k_z = 0.5 mirror planes.

Table 1. Relaxed structural parameters of Y_2C_2I_2 for different functionals. The values of PBEsol+U (U=2 eV) and the PBE functional are almost identical with the experimental lattice parameters, which justify our usage of the PBE functional in the main text.

<table>
<thead>
<tr>
<th>Structural parameters</th>
<th>U=0.25 eV</th>
<th>U=0.5 eV</th>
<th>U=1 eV</th>
<th>U=2 eV</th>
<th>PBE</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>7.21</td>
<td>7.22</td>
<td>7.22</td>
<td>7.23</td>
<td>7.24</td>
<td>7.20</td>
</tr>
<tr>
<td>b (Å)</td>
<td>3.85</td>
<td>3.86</td>
<td>3.86</td>
<td>3.87</td>
<td>3.87</td>
<td>3.87</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10.44</td>
<td>10.43</td>
<td>10.41</td>
<td>10.38</td>
<td>10.36</td>
<td>10.40</td>
</tr>
<tr>
<td>β</td>
<td>93.64</td>
<td>93.67</td>
<td>93.73</td>
<td>93.78</td>
<td>93.83</td>
<td>93.70</td>
</tr>
</tbody>
</table>

Figure S1. The band structure without SOC of Y_2C_2I_2 calculated with PBEsol+U with U values of a) 0.25 eV, b) 0.5 eV, c) 1 eV, d) 2 eV and e) calculated with the PBE functional.
Figure S2. Evolution of the Wannier charge center associated with the \(k_z = 0 \) (left) and \(k_z = 0.5 \) (right) mirror planes for the eigenvalues +i and −i.

Figure S3. The band structure without SOC of a) 1 layer Y\(_2\)C\(_2\)I\(_2\), b) 2 layers Y\(_2\)C\(_2\)I\(_2\), and c) 3 layers Y\(_2\)C\(_2\)I\(_2\).

Figure S4. Crystal structure of the (010) edge in the monolayer Y\(_2\)C\(_2\)I\(_2\).
Figure S5. The band structure without SOC of a) 3D double nodal lines La$_2$C$_2$I$_2$, and b) 2D nodal line in a single layer La$_2$C$_2$I$_2$.

References

