Electronic Supplementary Information for

Origin of strong red emission in Er3+-based upconversion materials: Role of intermediate states and cross relaxation

\textit{Chiho Lee1,‡, Heeyeon Park2,‡, Woong Kim2,*, and Sungnam Park1,3,*}

1Department of Chemistry and Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

2Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

3Green School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea

*Authors to whom correspondence should be addressed.
Email addresses: woongkim@korea.ac.kr & spark8@korea.ac.kr
‡ These authors contributed equally to this work
Figure S1. XRD patterns of (a) NaErF$_4$, NaYF$_4$:Yb$^{3+}$,Er$^{3+}$ (Y$^{3+}$:Yb$^{3+}$:Er$^{3+}$=78:20:2), and (b) NaYF$_4$:x%Er$^{3+}$ (x=20~80) powders.
Figure S2. (a) Nanosecond time-resolved PL experimental setup. (b) Schematic illustration of an optical parametric oscillator (OPO) and nonlinear optical processes.
Figure S3. (a) PL spectra measured with NaErF$_4$ powders (λ_{exc} = 489 and 978 nm). The excitation laser power is 20 mW. (b) The energy level diagram of Er$^{3+}$. The margent arrows indicate that the radiative relaxation from higher electronic states ($^2I_{11/2}$, $^2D_{7/2}$ and $^2D_{5/2}$ states) to $^2G_{9/2}$ and $^2G_{11/2}$ states. The non-radiative relaxations (nRR) are indicated by the black arrows.
Figure S4. (a) Power-dependent PL spectra measured with NaErF$_4$ powders ($\lambda_{\text{exc}}=520$ nm). A 532 nm Raman edge filter was used to block the Rayleigh scattering. The emission at ~520 nm is not shown. All PL spectra were normalized based on the peak at ~540 nm ($^4S_{3/2} \rightarrow ^4I_{15/2}$) for comparison. (b) Power-dependent emission peaks at ~380 and ~410 nm. (c) and (d) The log-log plot of the emission intensities (I) against excitation laser power (P_{exc}). Data points are experimental results and the line is the fit to Eq. (1). The slopes (n) are given.
Figure S5. (a) PL spectra and (b) time resolved PL signals measured with NaYF$_4$:Yb$^{3+}$:Er$^{3+}$(Y^{3+}:Yb$^{3+}$:Er$^{3+}$=78:20:2) powders (λ_{exc} = 355, 441, and 978 nm). PL spectra are normalized based on the peak at ~540 nm. The excitation laser power is set to 20 mW. (c) The energy level diagram and the possible transitions. The resonance energy transfers are indicated by the dashed arrows.

Figure S5. (a) PL spectra and (b) time resolved PL signals measured with NaYF$_4$:Yb$^{3+}$:Er$^{3+}$(Y^{3+}:Yb$^{3+}$:Er$^{3+}$=78:20:2) powders (λ_{exc} = 355, 441, and 978 nm). PL spectra are normalized based on the peak at ~540 nm. The excitation laser power is set to 20 mW. (c) The energy level diagram and the possible transitions. The resonance energy transfers are indicated by the dashed arrows.
Figure S6.

(a) PL spectra measured with NaErF$_4$ powders (λ_{exc}= 355 and 441 nm). PL spectra are normalized based on the peak at 655 nm for comparison. The sub-harmonic of 355 nm was deleted from the PL spectrum. The excitation laser power is set to 20 mW. (b) The energy level diagram of Er$^{3+}$. The peaks at ~810 and 978 nm result from the cross relaxation as indicated by the dashed arrows. The cross relaxation between neighboring Er$^{3+}$ ions are very efficient in NaErF$_4$ powders.
Figure S7.

![PL spectrum measured with NaErF₄ powder ($\lambda_{exc} = 1528$ nm). The electronic states are assigned to all the peaks.](image-url)

Figure S7. PL spectrum measured with NaErF₄ powder ($\lambda_{exc} = 1528$ nm). The electronic states are assigned to all the peaks.
Table S1. Particle sizes of Er\(^{3+}\)-based upconversion materials

<table>
<thead>
<tr>
<th>UC material</th>
<th>Particle size (nm)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaErF(_4)</td>
<td>44.8</td>
</tr>
<tr>
<td>NaYF(_4);Er(^{3+}) (80%)</td>
<td>40.1</td>
</tr>
<tr>
<td>NaYF(_4);Er(^{3+}) (60%)</td>
<td>34.8</td>
</tr>
<tr>
<td>NaYF(_4);Er(^{3+}) (40%)</td>
<td>34.7</td>
</tr>
<tr>
<td>NaYF(_4);Er(^{3+}) (20%)</td>
<td>32.1</td>
</tr>
<tr>
<td>NaYF(_4);Yb(^{3+}), Er(^{3+}) (78% : 20% : 2%)</td>
<td>37.6</td>
</tr>
</tbody>
</table>

\(^a\) Particle sizes were estimated from the XRD data and the Scherrer equation.