Ti$_2$O$_3$/TiO$_2$ heterophase junction with enhanced charge separation and spatially separated active sites for photocatalytic CO$_2$ reduction

Min Xua, Amir Zadac, Rui Yanb, Haonan Lib, Ning Sunb and Yang Qub*

aCollege of Science & Technology Ningbo University, Ningbo 315211, PR China.

bKey Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.

cDepartment of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.

Figure S1 TG curve of Ti$_2$O$_3$.

Figure S1 TG curve of Ti$_2$O$_3$.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020
Figure S2 Raman curve of Ti$_2$O$_3$ (T) and Ti$_2$O$_3$/TiO$_2$ nanocomposites.

Figure S3 HRTEM image of T550.
Figure S4 TEM of T700.

Figure S5 Wide XPS of Ti$_2$O$_3$ (T) and Ti$_2$O$_3$/TiO$_2$ nanocomposites.
Figure S6 Band gap and partial density of states of Ti$_2$O$_3$. The calculations were performed within the framework of density functional theory (DFT) framework embedded in the CASTEP code. The exchange-correlation energy is treated with generalized gradient approximation (GGA), using spin-polarized Perdew-Burke-Ernzerhof (PBE) functional.

Figure S7 Mass spectra analyses of the carbon source of the evolved CH$_4$ and CO in the photocatalytic reduction of 13CO$_2$.
Figure S8 Amount of products versus irradiation time of T550 for photocatalytic CO\textsubscript{2} reduction and H\textsubscript{2} production.

Figure S9 CO\textsubscript{2}-TPD of T and T550.