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S1 Boundary conditions for governing equations

Fig.S1 shows the sketch of the simulation domain of the electrokinetic power 

generation system in Figure 2 in a two-dimensional cylindrical coordinate system 

. Due to the axial symmetry, only half of the power generation system is simulated (𝑟,  𝑧)

to reduce the computational load. The numerical simulation of electrokinetic power 

generation phenomena requires appropriate boundary conditions for the governing 

equations in the main text. Table S1 summarizes the boundary conditions for the 

Poisson equation, the Nernst-Planck (NP) equation and the Navier-Stokes 

(NS)/continuity equations.

For the Poisson equation which governs the electric potential distribution in the 

domain, the following boundary conditions apply: AH is the axis of the conical 

nanochannel consequently satisfies the symmetry condition; DE is the nanochannel 

wall which are negatively charged, and then is prescribed with a constant charge density 

boundary; BC and FG are the imaginary boundaries in two reservoirs located far away 

from the inlet and outlet of conical nanochannel, and therefore these two boundaries 

can be assumed to be in the bulk solution and are prescribed with zero charge density 

(i.e., n∙ =0); CD and EF are the solid walls of two reservoirs, and in this study are ∇𝜓

considered to be electrically neutral (i.e., n∙ =0) [1]; AB and GH can be the inlet or ∇𝜓

outlet boundary depending on the direction of applied pressure difference, and these 
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two boundaries are provided with given potentials of  and , respectively. For the 𝜓𝑙 𝜓𝑟

calculation of streaming potential in a forward pressure difference mode, we set 

 (i.e., AB grounded), while  is self-constantly determined by satisfying the 𝜓𝑙 = 0 𝜓𝑟

constraint of zero current , and accordingly the streaming potential . For 𝐼 = 0 𝜓𝑠𝑡 = 𝜓𝑟

the calculation of streaming potential in a backward pressure difference mode, we set 

 (i.e., GH grounded), while  is self-constantly determined by satisfying the 𝜓𝑟 = 0 𝜓𝑙

constraint of zero current , and accordingly the streaming potential . 𝐼 = 0 𝜓𝑠𝑡 = 𝜓𝑙

During the calculation of the current-voltage relationship, the electric potential on the 

non-grounded boundary varies from 0 to the streaming potential  with a step of 0.1𝜓𝑠𝑡

.𝜓𝑠𝑡

For the NP equation which governs the ion concentration, the following boundary 

conditions apply: AH is the axis of the conical nanochannel and consequently satisfies 

the symmetry condition; DE is the nanochannel wall and CD/FE are the walls of 

reservoirs, and these boundaries are prescribed with zero ion flux boundary (

) because the solid walls are impervious to ions; BC and FG are imaginary 𝑛 ∙ 𝐽 ± = 0

boundaries of reservoirs and are considered to be impenetrable by ions, and thus zero 

ion flux boundary ( ) applies; AB and GH are prescribed with the bulk 𝑛 ∙ 𝐽 ± = 0

concentrations of cations and anions (e.g., ) since the reservoirs are large 𝑐 + = 𝑐 ‒ = 1

enough and these two boundaries are in the bulk electrolyte.

For the NS and continuity equations which govern the liquid flow and pressure 

distribution, the following boundary conditions apply: AH is the axis of the conical 

nanochannel consequently satisfies the symmetry condition; DE is the nanochannel 

wall and CD/EF are the walls of reservoirs, and these solid walls satisfy the no slip 



boundary condition ; BC and FG are prescribed with the slip boundary (𝑖.𝑒.,  𝑢 = 0)

(equivalent to zero shear stress) because they are the imaginary boundaries in two 

reservoirs located far away from the inlet and outlet of conical nanochannel; AB and 

GH can be the inlet or outlet boundary depending on the direction of applied pressure 

difference, and these two boundaries are provided with given pressures of , and , 𝑝𝑙 𝑝𝑟

respectively. For the forward pressure difference mode, we set , , while 𝑝𝑙 = ∆𝑝 𝑝𝑟 = 0

for the backward pressure difference mode, we set , .𝑝𝑙 = 0 𝑝𝑟 = ∆𝑝

Figure S1. The 2D axisymmetric sketch of the simulation domain for the electrokinetic 

power generation system shown in Figure 2.

Table S1. Boundary conditions for the governing equations of the pressure-driven 

electrokinetic power generation

Boundary conditions Poisson equation NP equation NS equation

AH (central axis) Axial symmetry Axial symmetry Axial symmetry

AB (inlet/outlet) 𝜓𝑙 𝑐 + = 𝑐 ‒ = 1 𝑝𝑙

GH (outlet/inlet) 𝜓𝑟 𝑐 + = 𝑐 ‒ = 1 𝑝𝑟

BC, FG (imaginary 

boundaries)
𝑛 ∙ ∇𝜓 = 0 𝑛 ∙ 𝐽 ± = 0 𝑢 ∙ 𝑛 = 0

CD, EF (reservoir wall) 𝑛 ∙ ∇𝜓 = 0 𝑛 ∙ 𝐽 ± = 0 𝑢 = 0

DE (nanochannel wall) 𝑛 ∙ ∇𝜓 =‒ 𝜎 𝑛 ∙ 𝐽 ± = 0 𝑢 = 0



S2 Model validation

We solve the model numerically with the finite element software COMSOL 

Multiphysics 5.4, which features a capability of simulating the problem involving 

multiphysical processes as in this study. We use the mapped method to mesh the 

nanochannel domain with 230 elements and 3000 elements along the radial direction 

and the axial direction, respectively. Particularly, the element size in the radial direction 

decreases gradually by controlling the element ratio to create extremely fine mesh near 

the charged wall of the conical nanochannel. This is crucial for correctly capturing the 

dramatic change of ion concentration, velocity and electric potential in the EDL. The 

two reservoirs are meshed with the free triangular elements. We also notice that in order 

to obtain convergent results in the simulation the conical nanochannel requires more 

mesh elements than the nanochannel with uniform cross-section. By a mesh-

independence study, we find that typically 690, 000 mapped elements in nanochannel 

and 26, 500 triangular elements in two reservoirs (a total of 716, 500 elements) lead to 

mesh-independent results.

To validate our model, we adopt the model to solve a benchmark case of the 

electrokinetic power generation in a nanochannel with uniform cross-section (e.g., b=1) 

under a low surface charge density condition, which has an analytical solution due to 

the Debye-Hückel approximation [2, 3]. Fig. S2 shows a comparison of the streaming 

potential obtained from the numerical solution and that obtained from the analytical 

solution. It is seen that our numerical model accords well with the analytical model for 

various channel sizes. Due to this fact, the current numerical model is robust and 

therefore ready for use to study the electrokinetic power generation in conical 

nanochannels.



Figure S2. A comparison of the streaming potential obtained from our numerical model 

and that obtained from the analytical solution for a nanochannel of uniform cross-

section with different values of scaled channel radius. In the calculations, the surface 

charge density  and the pressure difference .𝜎 =‒ 0.54 ∆𝑝 = 20.18

S3 Radial ion concentration and electric potential distribution

Fig. S3 shows the radial ion concentration and electric potential profiles at three axial 

locations for the conicity of b=80. It is evident that with the increase of channel radius 

along the channel axis both cation and anion concentrations are able to achieve the bulk 

electrolyte concentration on the channel axis. This feature suggests the trend of EDL 

de-overlapping along the channel axis and the emergence of the electroneutral region 

at the wide end of the nanochannel. Meanwhile, the trend of EDL de-overlapping along 

the channel axis is also reflected by the flattening of the radial electric potential profiles.



Figure S3. The steady-state radial profiles of cation concentration, anion concentration 

and electric potential for the conicity b=80 at three axial locations, namely, (a) , 𝑧 = 1

(b) , (c)  under a forward (solid lines) and backward (dashed lines) 𝑧 = 20 𝑧 = 519

pressure difference with the same magnitude of  and a surface charge |∆𝑝| = 100.9

density of .𝜎 =‒ 0.5
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