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1. DPD fundamentals. 

In DPD method, like molecular dynamics, the motion of all the DPD beads obeys Newton’s 

equation of motion. 

      
𝑑𝒓𝑖

𝑑𝑡
= 𝝂𝑖  ,         

𝑑𝝂𝑖

𝑑𝑡
= 𝒇𝑖 𝑚𝑖⁄                                                                                                              (S1) 

where ri, vi and mi denote the position vector, velocity vector and mass of beads respectively, and 

fi is the force acting on bead i. The force Fij exerted on bead i by bead j is consisted of a 

conservative force 𝑭𝑖𝑗
𝐶 , a dissipative force 𝑭𝑖𝑗

𝐷  and a random force 𝑭𝑖𝑗
𝑅 . Thus, the total force fi is 

given by  

     𝒇𝑖 = ∑(𝑭𝑖𝑗
𝐶 + 𝑭𝑖𝑗

𝐷 +𝑭𝑖𝑗
𝑅 )

𝑗≠𝑖

                                                                                                                    (S2) 

where the sum runs over all other beads within the cutoff radius rc. And the conservative force 

𝑭𝑖𝑗
𝐶 , dissipative force 𝑭𝑖𝑗

𝐷  and random force 𝑭𝑖𝑗
𝑅  are given by 

     𝑭𝑖𝑗
𝐶 = {

𝑎𝑖𝑗(𝑟𝑐 − 𝑟𝑖𝑗)𝒆𝑖𝑗       𝑟𝑖𝑗 ≤ 𝑟𝑐

0                               𝑟𝑖𝑗 > 𝑟𝑐
                                                                                                    (S3) 

     𝑭𝑖𝑗
𝐷 =  −γ𝜔𝐷(𝑟𝑖𝑗)(𝒆𝑖𝑗 ∙ 𝝂𝑖𝑗 )𝒆𝑖𝑗                                                                                                           (S4) 

     𝑭𝑖𝑗
𝑅 = σ𝜔𝑅(𝑟𝑖𝑗)𝜃𝑖𝑗𝒆𝑖𝑗                                                                                                                            (S5) 

where 𝑎𝑖𝑗 is a constant that describes the maximum repulsion between two interacting beads.  𝑟𝑖𝑗 

is the distance between beads i and j.  𝒆𝑖𝑗 = 𝒓𝑖𝑗 𝑟𝑖𝑗⁄ , 𝝂𝑖𝑗 = 𝝂𝑖 − 𝝂𝑗 , 𝝂𝑖  and 𝝂𝑗 are the velocities of 

beads i and j, respectively. γ and σ are the amplitudes of dissipative and random forces, 

respectively. 𝜃𝑖𝑗  is a randomly fluctuating variable. ωD and ωR are r-dependent weight functions 

for dissipative and random forces, respectively. According to the fluctuation-dissipation theorem, 

ωij
D(r)=[ωij

R(r)]2 and σ2=2γkBT (σ=3 and γ=4.5). The following simple form of ωD and ωR was 

chosen by Groot and Warren1: 

     ω𝐷(𝑟) = [ω𝑅(𝑟)]2 = {
(1 − 𝑟 𝑟𝑐⁄ )2      𝑟 ≤ 𝑟𝑐

0                         𝑟 > 𝑟𝑐
                                                                                (S6) 
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2. The generation of the DPD model of rod-alt-coil ACPs. 

 

Fig. S1. P(DTPA-alt-DEE) serves as an example to illustrate the formation of the general DPD 

model of rod-alt-coil ACPs ((RxCy)n). The cyan and red ellipses indicate the coarse-grained 

scheme. Cyan and red beads represent the solvophobic rod segments (Rx) and solvophilic coil 

segments (Cy), respectively. 
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3. Effects of kθ on the rigidity of the rod chains. 

 

Fig. S2. Variation of the mean square end-to-end distance (Re
2) and the mean square radius of 

gyration (Rg
2) with the rigidity kθ of the rod chains. 
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4. Justification of simulation time. 

A representative variation of the potential energy with simulation time is plotted in Figure S3, in 

which we can found that the simulation time is long enough for the system to reach equilibrium. 

In addition, through tracking the moving of polymer chains, our final simulation time is 

adequately long to have a polymer chain move on average more than ten times its radius of 

gyration. It reveals that the polymers have forgot their initial configuration and have completely 

relaxed. 

 

Fig. S3. Variation of potential energy with the simulation time in the self-assembly of (R6C5)6 as 

a representative example. 

Table S1. Diffusion coefficient (D), the average distance one chain moves in 4.0 × 105 time 

steps (dmove), the radius of gyration of the chain (Rg), and the ratio between dmove and Rg. 

Polymers D dmove Rg dmove/Rg 

(R10C12)6 7.91 × 10-4 43.57 7.20 6.05 

(R8C8)6 8.85 × 10-4 46.09 5.39 8.55 

(R5C5)6 1.03 × 10-3 49.72 3.67 13.55 
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5. Reproducibility of the simulation results. 

 

Fig. S4. The results of three times repeat simulation of polymer (R10C5)6, (R6C5)6, and (R3C5)6, 

respectively. Rod and coil segments are denoted as cyan and red, respectively. 
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6. Elimination of the finite size effect. 

 

Fig. S5. The simulation results with different box sizes for polymer (R10C5)6, (R6C5)6, and 

(R3C5)6, respectively. Rod and coil segments are denoted as cyan and red, respectively. 
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7. The formation of BCMs and PMs. 

 

Fig. S6. Sequential snapshots illustrated for the formation of BCMs (a) and PMs (b). Rod and 

coil segments are denoted as cyan and red, respectively. 
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8. The definition and criteria of the loop and bridge conformations. 

As shown in Figure S6, -ABA- is a part of the polymer chain. The centers of mass of the 

segments are denoted as rA1, rB and rA2. Two vectors (v1, v2) can be obtained, as well as the angle 

between vectors (φ). The quantity of interest is given as 

cosφ =
(𝒓A1 − 𝒓B) ∙ (𝒓A2 − 𝒓B)

|𝒓A1 − 𝒓B||𝒓A2 − 𝒓B|
 

Using this quantity, the segment is defined as loop conformation if cosφ > 0, while bridge 

conformation if cosφ < 0. Through counting the numbers of loop segments (NL) and bridge 

segments (NB), the percentage of the bridge conformations (vbridge) can be given as vbridge = 

NB/(NB+NL). 

 

Fig. S7. Scheme for calculating the conformation of the repeating segments. 
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9. Rod alignment and orientation in the membrane obtained from (R6C2)6. 

 

Fig. S8. Rod alignment and orientation in the membrane obtained from (R6C2)6. (a) Top view of 

the membrane; (b) Angle distribution in the XOY plane of the membrane; (c) Side view of the 

membrane; (d) Angle distribution along the radial direction (R) of the membrane. θ is the 

included angle between rod and XOY plane, while “Radius” is the distance between rods and the 

center of mass of membrane. Coil segments are omitted for clarity. 
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10. Effects of coil length of the self-assembly of rod-alt-coil ACPs. 

 

Fig. S9. Variations of the order parameter (S) as a function of the coil length (x) for (R7Cy)6. 

Insets show the corresponding snapshots. Rod and coil segments are denoted as cyan and red, 

respectively. 

  



 13 

11. The calculation of π-π interaction. 

 

Fig. S10. Scheme for the calculation of π-π interaction between rod segments. 

The pi-pi interaction is calculated as follows: 

𝑉𝜋−𝜋(𝑟, 𝜃) = −𝜖cos2𝜃(1 − 𝑟)     𝑟 < 𝑟𝑐𝑢𝑡

                    =               0                   𝑟 < 𝑟𝑐𝑢𝑡
 

where 𝜖  is the strength. As shown in Fig. S10, every three neighboring particles in the rod 

segments are a calculation unit. π-π interaction between two units is acted on the center particle 

(yellow bead), and r is the distance of two center particles. The vector from particle n-1 to n+1 is 

defined as the vector of this unit. The angle θ between two units is the included angle of their 

vectors. 

Detailed information can be found in the website of this software:  

1. https://galamost.readthedocs.io/en/latest/forcefield-nonbonded.html#linear-pi-pi 

2. https://bitbucket.org/galamostdevelopergroup/source-

code/src/master/src/lib_code/cuda/CenterForce.cu 

3. https://galamost.ciac.jl.cn 
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12. The effect of π-π strength on the rod alignment. 

 

Fig. S11. (a) Variation of the order parameter (S) as a function of π-π strength (ε) for (R6C6)6. (b-

d) Rod alignment and orientation in the cylindrical micelles with ε = 0, 0.4 and 1.0, respectively. 

θ is the included angle between rod and OX axis, while “Position” is the center of mass of the 

rod along the OX direction. Coil segments are omitted for clarity. Rod and coil segments are 

denoted as cyan and red, respectively. 
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13. The effect of MW and MWD. 

 

Fig. S12. (a) Effect of degree of polymerization on the morphologies of (R3C2)n, (R3C5)n (R6C3)n, 

(R6C5)n and (R7C7)n. (b) Effect of polymer polydispersity on the morphologies of (R3C2)n, 

(R3C5)n (R5C5)n, (R6C3)n and (R7C7)n. (c) Effect of polymer polydispersity on the order 

parameters. (d) Effect of polymer polydispersity on the feature sizes. 
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14. Polydisperse systems. 

Table S2. The polydisperse polymer systems (samples 1-6) with different polydispersity for 

simulations. 

 n = 6 n = 10 n = 20 n = 40 n = 60 n = 80 naverage Ð 

Sample 1 100% 0% 0% 0% 0% 0% 6.00 1.00 

Sample 2 5% 5% 5% 75% 10% 0% 31.8 1.11 

Sample 3 10% 30% 40% 10% 10% 0% 21.6 1.53 

Sample 4 30% 30% 10% 10% 10% 10% 24.8 2.02 

Sample 5 60% 10% 5% 5% 5% 15% 17.2 2.49 

Sample 6 75% 5% 5% 5% 0% 10% 16.00 3.02 

 

Note: The polydisperse polymer samples (samples 1-6) were obtained by mixing the 

alternating copolymers (n=6, 10, 20, 40, 60 and 80) with different volume ratios. 
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15. Molecular packing behaviors of (R6C3)n in the monolayers of membrane. 

 

Fig. S13. (a) The packing model of (R6C3)40 inside the membranes of different polydisperse 

systems. (b) The packing model of (R6C3)n with various n inside the membranes with Đ = 2.02. 

Rod and coil segments are denoted as cyan and red, respectively. 
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16. Packing parameters. 

 

Fig. S14. (a) Variation of packing parameters as a function of degree of polymerization for 

(R6C3)n, (R6C5)n and (R7C7)n. (b) Variation of packing parameters as a function of polydispersity 

for (R6C3)n, (R5C5)n and (R7C7)n. 
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17. Formation of unimolecular cylindrical micelle and disk. 

 

Fig. S15. Sequential snapshots for the formation of unimolecular cylindrical micelle from 

(R7C7)200 (a) and unimolecular disk from (R6C3)250 (b). Rod and coil segments are denoted as 

cyan and red, respectively. 
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