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-SUPPLEMENTARY MATERIAL -

EQUATIONS OF MOTION IN EXCITONIC BASIS AND CAPTURE RATES

The dynamics of exciton densities appearing in the main text follow from the TMD Bloch equations [1, 2] and can be written
in its general form :
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Q
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(S1)

The dephasing of the coherence P νQ′ leads to the formation of incoherent excitons. The first contribution proportional to ∝ |P 2|
is the driving term for the considered dynamics of excitons. The incoherent excitons can decay radiatively with the rate Γµrad
(second contribution in Eq. S1), as long as they are located within the light cone with Q ≈ 0. This is valid for both free
and localized KK excitons. Moreover, the incoherent excitons thermalize towards a thermal Bose distribution through exciton-
phonon scattering (third contribution in Eq. S1). This is determined by out-scattering rates Γµν,out

QQ′ describing phonon-driven
scattering from the state (µ,Q) to the state (ν,Q′) and in-scattering rates Γνµ,inQ′Q describing the reverse process. Transforming
now in the localized exciton basis, we find for the dynamics of localized excitons:
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∑
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with exciton-phonon scattering rate [2] in localized exciton basis
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+ nphon
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)
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where Dνnµm
αQ′ corresponds to the exciton-phonon matrix elements ,nphon

αQ describes the phonon occupation, ΩαQ denoting the
energy of the involved phonon, and εµmcorresponding to the exciton energy of the involved states. The delta distribution in Eq.
(S3) assures energy conservation between initial and final exciton state under emission/absorption of phonons.

The appearing exciton-phonon matrix elements read

Dνnµm
αQ =

∑
qQ′

χνn∗Q ϕν∗q g
cc
Q′αϕ

µ
q+βQ′χ

µm
Q+Q′ (S4)

including both free ϕ and localized χ wavefunctions and the electron-phonon coupling elements gccQα [3] . Depending on
initial and final state we can distinguish three processes: (i) Free → Free described by Γνµ,phon

Q′Q , (ii) Loc → Loc described
by Γνnµm,loc, and (iii) Free → Loc (Loc → Free) described by ΓνFµm,capt(ΓµmνF,esc). Scattering between free exciton states
includes both intra- and inter-valley scattering. Scattering between localized exciton states is restricted to processes within the
same valley, since intervalley scattering would involve at least two phonons. Phonon-driven scattering from a free to a localized
state corresponds to a capture or an escape process.

Note that our system has to be in an orthogonal basis, i.e. it has to yield ΦqQ = χQφq where ΦqQ are eigen vectors
of an orthogonal system. To describe the continuum of states, we use plane waves and describe the free eigenfunctions by
orthogonalized plane waves [4–6]:

|φOPWQ 〉 =
1

NQ

(
|φPWQ 〉 −

∑
µm

〈χµmQ |φ
PW
Q 〉|χµmQ 〉

)
(S5)

with the normalization factor NQ =
√

1−
∑
µm |〈χ

µm
Q |φPWQ 〉|2 and the plane waves φPWQ which can be described in momen-

tum space by a delta function around the QF , ie. φPWQ ≈ δQ,QF . Using this approach, we are able to calculate all scattering
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and capture rates. We find that the capture of excitons is most likely to happen in the energetically closest localized state. Cap-
ture in energetically lower lying states appears on a much slower timescale and is hence negligible. The reason for that is the
energy conservation in Eq. (S4). Furthermore, the relaxation dynamics within the localized states happen on a much faster time
scale than capture processes, i.e. excitons decay almost immediately from any ns state to the lowest 1s state. Hence, it is most
important to take into account the localized 1s states for the calculation of the optical response.

Assuming a Boltzman distribution for the free states NµF
QF
≈ NµF

0 e
−β(EµFQF−E

µF
0 ) yields to

∑
QF

NµF
QF

= NµF
0 κµ with

κµ =
Mµ

2π~2β which enables us to evaluate Eq. (S1) and Eq. (S2). Taking all intra- and intervalley exciton-phonon scattering as
well as capture and escape processes into account, we find for the dynamics of bright and momentum-dark exciton µ = KΛ,KK’),
both free F and localized L states :
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(S6)

ṄµL = ΓµL,form −
(
ΓµL,rad + ΓµLµF esc)NµL + ΓµFµLcaptNµF

0 (S7)

where we have introduced the radiative dephasing ΓµF (L),rad for the free (localized) state within the light cone, ie.
µ=KK, a term ΓµF (L),form = ΓµF (L)µL|PµL|2 +

∑
νQF

ΓµF (L)νQF |P νF |2 which corresponds to the driving term due

to decay of coherent excitons, ΓµFµLcapt =
∑
QF

ΓµFµLQF
e
−βEµFQF as capture and ΓµLµF esc =

∑
QF

ΓµLµFQF
as escape

rates, and finally for in and outscattering with phonons between free excitons ΓµFνF in =
∑
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F and
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ΓµFνFQFQ′

F
e
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The radiative decay of both free and localized excitons is calculated by exploiting the corresponding wave functions obtained
through the Wannier equation [7]. All appearing exciton-phonon scattering and capture/escape rates have been calculated on
microscopic footing within the second-order Born-Markov approximation [8] and exploiting the orthogonalized plane wave
approach [4–6] as discussed above. Solving Eq. (S6) provides access to time dependent exciton occupations in different exciton
states entering the photoluminescence equation in the main manuscript.

LOCALIZED EXCITONS FOR A DEEPER DISORDER POTENTIAL

Here, we investigate localized excitons in analogy to the main text, however focusing now on a deeper disorder potential
with V0 = 160 meV reflecting well findings in recent photoluminescence excitation measurements [9]. As a result of
the deeper potential, we find larger binding energies of localized excitons, cf. Fig. S1. Another consequence is that
the phonon-induced capture processes are significantly weaker in particular with respect to the intervalley scattering.
This leads to less pronounced features of localized excitons in PL spectra that are dominated by phonon-sidebands of
momentum-dark excitons, cf. Fig. S2. Increasing the disorder width, the capture efficiency is enhanced due to larger
overlaps of free and localized exciton wavefunctions and the increased role of higher localized excitonic states, cf. the
inset in Fig. S3.

Figure S1. Characteristics of localized excitons. Disorder-width dependent (a) binding energies and (b) 1s wavefunctions of localized
excitons. The calculated results are in good agreement with recent photoluminescence excitation measurements [9] (black line).
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Figure S2. Temperature dependent photoluminescence. (a) Surface plot of time integrated photoluminescence for different temperatures
and a fixed disorder potential with σ = 30 nm and V0 = 160 meV. (b) 2D cuts from the surface plot at constant temperatures. Note that the
spectra are shifted in energy so that the bright X exciton is located at 0 meV. The inset shows phonon-induced capture (red) and intervalley
(gray) scattering rates.

Figure S3. Disorder-width dependent photoluminescence. (a) Time-integrated photoluminescence spectra at 10 K for varying disorder
width. (b) 2D cuts of the surface plot at four fixed widths. We predict clear signatures from both localized bright and dark excitons XLoc and
XD

Loc. While for widths up to 50 nm phonon-assisted side bands from XD
Loc are predominant, bright localized excitons XLoc gain intensity for

larger disorder widths reflecting the increasing capture rate, cf. the inset.
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[6] E. Malić, K. J. Ahn, M. J. Bormann, P. Hövel, E. Schöll, A. Knorr, M. Kuntz, and D. Bimberg, Applied physics letters 89, 101107 (2006).
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