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1 Dipole and polarizability models

1.1 Dipole and polarizability of water slab

The dipole M and polarizability A of a system of water molecules were obtained as the sum of corresponding
molecular quantities

M = ∑
i

µi (S1)

A = ∑
i

ai (S2)

with µi and ai denoting the dipole moment and polarizability tensor of molecule i, respectively. The effect of
intermolecular interactions in condensed phase was taken into account with dipole interaction model.1,2 In a
system of N interacting molecules that are characterized by permanent dipoles µ0 and polarizability tensors α,
the dipole µi of molecule i is given by

µi = µ0
i + αi

(
E0

i + ∑
j 6=i

T̂ij µj
)
, (S3)

where E0
i is an external electric field at the molecule’s position ri and T̂ij is the dipole-dipole interaction tensor

T̂ij =
1
r3

ij

(
3eijeT

ij − 1
)

(S4)

with eij = rij/rij (rij = ri − rj) and 1 being an unit matrix. The set of N equations (S3) can be rewritten in a
matrix form

m = m0 + a
(
E0 + Tm

)
= m0 + aE, (S5)

where E = E0 + Tm. The formal solution of (S5) for E reads

E =
(
1− Ta

)−1(E0 + Tm0
)

(S6)

and therefore, one obtains the vector of dipoles m as

m = m0 + a(1− Ta)−1(E0 + Tm0
)
= m0 + aeff(E0 + Tm0

)
, (S7)
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where aeff ≡ a(1− Ta)−1 is a 3N × 3N matrix of effective system polarizability. The dipole µi of molecule i is
readily available from (S7), whereas the polarizability tensor ai is given by2

ai = ∑
j

aeff
ij , (S8)

where the sum runs over 3× 3 blocks of the matrix aeff.

1.2 Dipole and polarizability models for water molecule

The dipole µ0
i and polarizability αi of an isolated water molecule were obtained with models based on those

proposed by Morita and Hynes2.

Dipole model. Dipole of a molecule is computed as

µ0 = ∑
k

qkrk (S9)

where qk and rk denote the charge and position vector of atom k, respectively. In order to reproduce changes
of µ0 upon the dynamics of atoms, the atomic charges qk were made geometry-dependent. Following ref. 2,
the variation charge ∆qi of each of the two hydrogen atoms (i = 1, 2) is written in the form

∆qi ≡ qi − q0
H = a∆Ri + b∆R2

i + c∆θ + d∆θ2 + e∆Ri∆Rj + f ∆Ri∆θ, (S10)

where q0
H is the charge in the equilibrium geometry, ∆R and θ are deviations of OH bond length and HOH

angle θ from their equilibrium values, respectively, and a, b, c, d, e, f are coefficients.
By using symmetry-adapted internal coordinates

S1 = ∆R1 + ∆R2, S2 = ∆R1 − ∆R2 and S3 = ∆θ (S11)

to describe variations of molecular geometry, one can obtain the following expressions for symmetry-adapted
variations of ∆qi

∆q1 + ∆q2 = C1S1 + C2S2
1 + C3S2

2 + C4S3 + C5S2
3 + C6S1S3 (S12)

∆q1 − ∆q2 = C7S2 + C8S1S2 + C9S2S3 (S13)

∆qO = −
(
∆q1 + ∆q2

)
, (S14)

with the neutrality fulfilled. Then, using q0
H and combinations (S12)-(S14), it is straightforward to recover the

charges qk necessary for computing the dipole µ0
i (S9).

Polarizability model. The polarizability of water molecule was described by a bond polarizability model
that represents polarizability tensor α of molecule in Cartesian frame as the sum of bond polarizabilities

α = ∑
i

πi, (S15)

where the bond polarizability tensor πi of OH bond i (i = 1, 2) is given by

πi = Ui pi U−1
i . (S16)
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Table S1: Coefficients in eqns (S12), (S13) and (S18) (in au, rad−1, rad−2) for describing the dependence of atomic charges
and OH bond polarizability tensor components on the geometry of water molecule.

Dipole model parameters

C1 C2 C3 C4 C5 C6 C7 C8 C9

-0.13583 0.01507 0.02879 0.12088 0.05638 -0.05557 -0.06824 0.01472 0.11277

Polarizability model parameters

P1 P2 P3 P4 P5
5.63841 7.24435 3.53273 1.00417 2.90802

P6 P7 P8
4.80441 1.69457 0.34341

P9 P10 P11 P12

4.62814 0.69777 0.64988 -2.22892

In (S16), Ui stands for a rotation matrix transforming the bond polarizability tensor pi in its principal coordi-
nates to the tensor πi in the Cartesian frame. The tensor pi has the following form

pi =

pi,L

0 pi,T1

0 0 pi,T2

 , (S17)

where the subscripts L, T1 and T2 denote the longitudinal and two transversal axes of the bond polarizability
tensor, respectively; the longitudinal axis is directed along the OH bond and the first transversal axis is perpen-
dicular to the molecular plane. Dependence of the three non-zero components of pi on the internal coordinates
was described with the following functional forms

pi,L = P1 + P2∆Ri + P3∆R2
i + P4∆Rj + P5∆Ri∆Rj

pi,T1 = P6 + P7∆Ri + P8∆θ (S18)

pi,T2 = P9 + P10∆Ri + P11∆θ + P12∆Ri∆Rj.

Model parameters and model performance. The coefficients in eqns (S12), (S13) and (S18) were derived by
fitting model atomic charges and molecular polarizabilities to reference values obtained in quantum-chemical
calculations. For this purpose, geometry of an isolated water molecule was randomly varied in the limits
ROH = (R0

OH − 0.1 Å, R0
OH + 0.2 Å) and θ = (θ0 − 6◦, θ0 + 12◦) and ESP atomic charges and molecular polar-

izabilities were computed for a total of 300 configurations. The calculations used Gaussian09 code and were
performed at the DFT level with the B3LYP exchange-correlation functional and pVTZ basis set by Sadlej3 that
has been specifically designed to reproduce molecular dipoles and polarizabilities. The equilibrium value of
hydrogen charge is equal to q0

H = 0.3277 |e|.
Values of the coefficients obtained in the least squares fits are reported in Table S1. Figure S1 illustrates

the performance of the dipole and polarizability models. The former perfectly mimics changes of molecular
dipole upon variation of molecular geometry. The latter also gives a very good agreement between the fitted
and reference values of four non-zero components of the polarizability tensor; the majority of absolute relative
errors for the polarizability tensor elements is smaller than 0.5 %. It should be noted that alternative functional
forms for the polarizability tensor elements (S18) were tested, but they did not result in a notable improvement
of the fit quality. Judging on the results presented in Figure S1, the quality of the dipole model is comparable
with that used in ref. 2, while the polarizability model yields a better agreement between the model and
reference quantities than such a model developed in ref. 2 (cf. Fig. 1, ref. 2).

Assessment of the model performance for the spectral intensity calculations was done by computing the
infrared absorption coefficient and Raman activity of the vibrational modes. The dipole and polarizability
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Figure S1: Correlations between the reference and model values of the non-zero dipole components (a), and of the non-
zero elements of the polarizability tensor (b) in a total of 300 geometries of water molecule. Dashed line in the plots denotes
the identity line.

tensor derivatives entering these quantities were obtained by the finite difference method using Cartesian
vectors of atomic displacements in the vibrational modes. Figure S2 compares the spectral intensities yielded
by the models with their counterparts obtained by the DFT calculations. The agreement is excellent in all cases,
except the Raman activity of the angle-bending mode for which the polarizability model underestimates the
activity by ca. 25 %. The reason for such a large error lies in the fact that the activity of the mode primarily
comes from the anisotropy of the polarizability tensor derivative which has non-zero diagonal elements for
this mode. As the anisotropy depends on difference between these elements, the relative error is amplified
that, in its turn, causes a high relative error for this mode of low Raman activity.

Figure S2: Comparison of infrared absorption coefficients (left) and Raman activities (right) of the vibrational modes of
water molecule obtained in the DFT calculations and computed with the dipole and polarizability models; δ, νs and νas
denote angle-bending, symmetric bond-stretching and asymmetric bond-stretching modes, respectively.

Finally, the models were tested by computing the dipole and polarizability variations in the vibrational
modes of water molecule beyond the harmonic approximation. For this purpose, the atoms of H2O molecule
were displaced along the vectors of atomic displacements with large amplitudes. The variations of non-zero
components of the dipole and polarizability tensor are compared with reference DFT values in Figure S3 and
Figure S4 for the symmetric and asymmetric bond-stretching modes, respectively. The behaviour of the quanti-
ties is confidently reproduced at small and intermediate displacement amplitudes, but the agreement worsens
when the amplitude increases. Nevertheless, the relative errors are small and the dipole and polarizability
models have the quality sufficient for the purpose of the work.
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Figure S3: Variation of z-component of molecular dipole (left) and polarizability tensor elements (right) upon displacement
of atoms of water molecule in the symmetric bond-stretching mode. The vector of Cartesian atomic displacements was
multiplied by the factor Q shown along the x axis.

Figure S4: Variation of nonzero components of molecular dipole (left) and of polarizability tensor (right) upon displace-
ment of atoms of water molecule in the asymmetric bond-stretching mode. The vector of Cartesian atomic displacements
was multiplied by the factor Q shown along the x axis.

2 Second-order susceptibility calculations

The frequency-dependent χ(2),R(ω) tensor was computed using the time correlation function (TCF) formal-
ism.2,4,5 According to the approach, the pqr element of χ(2)(ω) is given by

χ
(2),R
pqr (ω) =

iω
kBT

∫ ∞

0
dt eiωt〈Mr(0) · Apq(t)〉, (S19)

where Mr and Apq stand for the r and pq components of the system dipole M and polarizability A, respectively,
and kB is the Boltzmann constant. Making use of (S1) and (S2), the time correlation function in (S19) for the
χ
(2),R
ssp element reads

Cssp(t) ≡ 〈Mp(0) · Ass(t)〉 =
〈
∑

i
µp, i(0) ·∑

j
ass, j(t)

〉
. (S20)

For a slab of water molecules with the surface plane coinciding with the xy plane and the z-axis perpendicular
to the the surface, the ssp element corresponds by the χ

(2)
xxz and χ

(2)
yyz components and (S20) can be recast to6–8

Cssp(t) =
〈
∑

i
µz, i(0) · [axx, i(t) + ayy, i(t)]

〉
+
〈
∑

i
µz, i(0) ·∑

j 6=i
[axx, j(t) + ayy, j(t)]

〉
, (S21)
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where the first and second terms in (S21) are intramolecular (self) and intermolecular (cross) parts of the full
TCF Cssp(t), respectively. The calculation of the cross TCF in (S21) was performed for molecules j with a mean
rij distance less than 5.5 Å (second minimum in the oxygen-oxygen radial distribution function in bulk liquid
water). A contribution of molecules of bulk region to the TCFs (S21) was attenuated7–9 by multiplying the
dipole µz, i(0) by a damping function g(zi)

µ′z, i(0) = g(zi(0))µz, i(0), (S22)

with zi(0) being the z-coordinate of molecular center-of-mass at t = 0; µ′z, i(0) replaces µz, i(0) in (S21). The
damping function g(z) has the following form

g(z) =
1
2

sign(z)
(
tanh(s(|z| − z0)) + 1

)
, (S23)

where g(z0) = 1/2 and parameter s determines the width of transition region. Thus, s = 2.1972 Å−1 gives
the width of 1 Å for the 0.1− 0.9 region. The sign() function avoids the cancellation of the dipole Mz because
of the symmetry of water slab with respect to z = 0. By changing z0, one can select a thickness of interfacial
region for the computation of the χ

(2),R
ssp susceptibility.

The TCFs were computed on the length Nc = 2048 and multiplied by a Hann apodization function of width
Nc/2 prior to performing the Laplace transform in (S19).

3 Characteristics of silica–water interface with QNULL and QESP parameter sets

Density and orientational order parameter profiles. Figure S5 displays the z-profiles of the relative density
ρ∗ and of the orientational order parameters S2 (eqn. (3), main article) computed for the QNULL and QESP
surfaces. It is noteworthy that the S2(z) profiles for the QESP set show an intermediate pattern between the
profiles obtained with the QNULL and CLAYFF sets.

Figure S5: z-profiles of the relative density ρ∗ = ρ/ρ0 and of the orientational order parameters S2(z) of water molecules
near the QNULL surface (panels a, b) and QESP surface (panels c, d). The vertical dashed line at z = 0 denotes the
coordinate of the bottommost silica oxygen atoms taken as the origin of the z-axis; the horizontal dashed line indicates
property value characteristic of bulk liquid water. Vertical dotted lines and the corresponding arrows labeled z1 and z2 are
discussed in the text.
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Probability density in the surface plane. Figure S6 shows the 2D probability density maps in the xy plane
for water molecules in the z2 region near the QNULL and QESP surfaces (Fig. S5). Note a marked increase of
the probability density in the sites A (Fig. 6, main article) with the increase of charges of silica atoms from the
QNULL (qSi = 0 |e|) to QESP (qSi = 1.38 |e|) sets.

Figure S6: Maps of probability density (in Å−2) for water molecules in the plane parallel to the surface in the z2 region; a)
– QNULL parameters set, b) – QESP parameters set; the same intensity scale is used for the maps in the panels.

OH bonds orientation.

The probability density maps for the angles ψ between the OH vectors and the z-axis for water molecules near
the QNULL and QESP surfaces are displayed in Figure S7.

Figure S7: Two-dimensional probability density maps (in arb. units) of the angles ψ between the OH bonds and the z-axis
for water molecules near the QNULL (a, b) and QESP (c, d) surfaces. Panels a, c – region z2; panels b, d – region z1, see
Fig. S5.

Sum-frequency generation spectra.

Figure S8 presents the Im[χ(2),R
ssp ] spectra computed for water on the QNULL and QESP surfaces and compares

the spectra with the spectrum of water–vapor interface. Note a very similar appearance of the spectra for the
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QNULL and water–vapor interfaces with a small downward shift due to weak van der Waals surface-water
interactions.

Figure S8: Spectrum of Im[χ(2),R] for the QNULL and QESP silica–water interfaces; the spectrum for water–vapor interface
is given for comparison as a filled shape.

Figure S9 displays the dependence of the spectra on the thickness of z-region taken in the calculation of the
SFG spectra (parameter z0 damping function (S23)). For both the hydrophobic surfaces the spectrum of the
entire interfacial water is, to a large degree, determined by molecules in the z1-region, the first water layer.

Figure S9: Spectra of Im[χ(2),R] as a function of the distance z from the surface, see Figure S5 for the region definition; left
– QNULL surface, right – QESP surface.

4 Water–vapor interface

Results of calculations for the water–vapor interface are reported for the sake of completeness. The simulated
system consisted of 500 SPCFw molecules in a slab geometry with the size of the MD simulation box of 25.54
Å along the x and y directions. The calculations were carried out using the same computational protocol as
for the interfacial systems (see Section 2.3, main article). Parameters of the damping function (S23) in the SFG
spectra calculations were equal z0 = 8.0 and s = 2.1972 Å−1.

Density and orientational order parameter profiles.

The calculated ρ∗(z) density profile and the profiles of the orientational order parameters S2 are shown in
Figure S10. The non-zero values of S2(z) for z > 4 Å results from a few molecules escaped the water surface
in the course of the simulations.
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Figure S10: z-profiles of the relative density ρ∗ = ρ/ρ0 (a) and of the orientational order parameters S2(z) (b) of water–
vapor interface. The vertical dashed line at z = 0 denotes the Gibbs dividing surface; the bulk water side and vapor side are
situated in the regions with the negative and positive z values, respectively. The horizontal dashed line indicates property
value characteristic of bulk liquid water.

Figure S11 presents the calculated spectra of the imaginary and real parts of the χ
(2),R
ssp susceptibility. The

spectra are in a good agreement with the results obtained using essentially the same models for the dipole and
polarizability of water molecule.9

Figure S11: Calculated spectra of the imaginary and real parts of the χ(2),R nonlinear susceptibility of water–vapor inter-
face.
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