Role of Ring-Enlargement Reactions in the Formation of Aromatic Hydrocarbons

Martina Baroncelli, Qian Mao, Simon Galle, Nils Hansen, Heinz Pitsch

1 Additional information on calibration

Information related to the species-specific parameters and the calibration procedure can be found in Table S1.

Table S1: Additional information on quantified species. M: nominal mass; IP: ionization potential [eV]; Ref. of xs: source of electron ionization cross section.

М	Species	Calibrated as	Calibration method	IP	Ref of xs
16	CH_4	Methane	Direct	12.61	[1]
26	C_2H_2	Acetylene	Direct	11.4	[2]
28	C_2H_4	Ethene	Direct	10.51	[3]
	CO	Carbon monoxide	Direct	14.01	[1]
30	CH_2O	Formaldehyde	Convolution	10.88	[4]
	C_2H_6	Ethane	Direct	11.52	[3]
32	O_2	Oxygen	Direct	12.07	[5]
42	C_2H_2O	Ketene	Convolution	9.62	[2]
	C_3H_6	Propene	Direct	9.73	[3]
50	C_4H_2	Buta-1,3-diyne	Convolution	9.58	[4]
52	C_4H_4	But-1-en-3-yne	Convolution	9.58	[4]
54	C_4H_6	1,3-Butadiene	Direct	9.07	[4]
56	C_4H_8	1-Butene	Direct	9.55	[4]
66	C_5H_6	1,3-Cyclopentadiene	Convolution	8.57	[2]
68	C_5H_8	cyclopentene	Direct	8.59	[2]
78	C_6H_6	Benzene	Direct	9.24	[4]
80	C_6H_8	Methylcyclopentadiene	Convolution	8.40	[2]
92	$\mathrm{C_7H_8}$	Toluene	Direct	8.83	[2]
102	C_8H_6	Phenylacetylene	Convolution	8.82	[2]
104	C_8H_8	Styrene	Convolution	8.46	[2]
106	C_8H_{10}	Ethylbenzene	Convolution	8.76	[2]
116	C_9H_8	Indene	Convolution	8.14	[2]
128	$\mathrm{C_{10}H_8}$	Naphthalene	Convolution	8.14	[2]

2 Quartz probe geometry

Figure S1 shows the technical details of the sampling quartz probe.

Figure S1: Technical drawing of the sampling nozzle. The figure is taken from Skeen et al. [6] where it is labeled as "Figure S2".

3 Summary of the modified reactions

In Table S2 the rate constants of the reactions which were updated or included in the $CRECK_{rev}$ model are reported. To facilitate the reader, Table S3 shows the chemical structures of some species which take part to some of these reactions but that are not introduced in the manuscript.

Table S2: List of reactions which have been updated or included in the $CRECK_{rev}$ model. Reactions (1)-(5) refer to the C_5H_6 updates; reactions (6)-(13) refer to the benzene and ethylbenzene subsets. The referenced papers are the source for the rate of each reaction.

	Reaction	A $[cm^{3}mol^{-1}s^{-1}]$	n	Ea [Cal mol^{-1}]	Ref.
$(1)^1$	$C_5H_6 + H = a - C_3H_5 + C_2H_2$	3.8870E + 28	-3.734	34872.00	[7]
$(2)^{1}$	$C_5H_6 + H = C_5H_5 + H_2$	1.42E + 07	2.091	3300.00	[7]
$(3)^{1}$	$C_5H_6 + CH_3 = C_5H_5 + CH_4$	2.78E + 00	3.73	4701.60	This work
$(4)^1$	$C_5H_6+O=C_5H_5+OH$	$6.20 \text{E}{+}06$	2.12	4855.20	This work
$(5)^{1}$	$C_5H_6 + OH = C_5H_5 + H_2O$	1.37E + 04	4.10	-844.8	This work
$(6)^1$	$C_5H_6 + HO_2 = C_5H_5 + H_2O_2$	5.21E-03	4.23	9040.80	This work
$(7)^2$	$C_6H_6 + H = C_6H_7 \#$	$3.2E{+}13$	0.0	3200	[8]
$(8)^2$	$C_6H_7\#+H=C_6H_8\#$	$1.0E{+}14$	0.0	0.0	[8]
$(9)^2$	$RMCPD = C_6H_7 #$	$1.4E{+}13$	0.0	17400	[8]
$(10)^2$	$MCPT+H=RMCPD+H_2$	$2.9E{+}07$	2.0	7700	[8]
$(11)^2$	RMCPDY=RMCPD	$3.0E{+}12$	0.0	50400	[8]
$(12)^2$	$MCPTD+H=RMCPDY+H_2$	$2.5E{+}04$	2.5	-2700	[8]
$(13)^2$	RMCPDY+H=MCPT	$1.0E{+}14$	0.0	0.0	[8]
$(14)^2$	$a-C_3H_5+C_5H_5=C_8H_{10}$	$5.0E{+}12$	0.0	6000	[9]

¹ Reaction already included in the mechanism whose rate was updated according to the given reference.

 2 New reaction included in the mechanism the rate is given by the corresponding reference.

Table S3: Chemical structures

Formula	Structure	Formula	Structure
$\mathrm{C}_{6}\mathrm{H}_{7}\#$	$\langle \rangle$	RMCPD	, ,
$\mathrm{C}_{6}\mathrm{H}_{8}$		RMCPDY	

4 Additional comparisons

In this section some additional comparisons against available literature cases are shown to sensitivity to the newly updated C_5H_6 subset.

Figure S2: Comparison between the laminar burning velocity of C_5H_6 measured by Ji et al. [10] and the two versions of the CRECK model.

Figure S3: Comparison between the species mole fraction profiles measured by Butler et al. [11] and the two versions of the CRECK model. Here we refer to the oxidation case of the experimental study. Numerical results are not time-shifted.

5 Update on Gueniche model

Figure S4: Comparison between the original version of the Gueniche model and the new one in which the new theoretically computed rates relative to H abstraction and addition to C_5H_6 were included (Gueniche_{rev}).

6 Spectrum for Flame_{CPME}

Figure S5 shows the signal spectrum of $\text{Flame}_{\text{CPME}}$ for comparison against Fig. 4 in the main manuscript which is related to Flame_{CP} .

Figure S5: Signal mass spectrum obtained from $\text{Flame}_{\text{CPME}}$ at 8 mm from the fuel outlet.

7 Main species

Figure S6 depicts the measured and computed profiles of fuels, O_2 , Ar, and major products for $Flame_{CP}$ (a) and $Flame_{CPME}$ (b). In (a) and (b) symbols correspond to experimental results, solid lines to simulations performed with the Gueniche model, and dashed lines to the CRECK model. The computed temperature profile is also included. The axial coordinate x represents the distance from the fuel inlet.

Figure S6: Left y-axis: comparison between the measured and computed mole fraction of the fuels C_5H_8 and CH_4 , O_2 , CO, CO_2 , H_2O and argon; right y-axis: computed temperature profile. The axial coordinate x represents the distance from the fuel outlet

8 Species profiles for Flame_{CPME}

Figure S7: Comparison between the computed and measured mole fractions for flame $\text{Flame}_{\text{CPME}}$. The axial coordinate x represents the distance from the fuel inlet.

9 Quantum chemistry calculations

species	T1 DIAG
CH3	0.0078978
0	0.0053117
OH	0.0070486
HO2	0.0269716
C5H6	0.011011
C5H6_CH3_TS_1	0.015178
C5H6_CH3_TS_2	0.042166
C5H6_CH3_TS_3	0.04209690
C5H6_O_RC_1	0.0127246
C5H6_O_RC_2	0.0127246
C5H6_O_RC_3	0.0127647
C5H6_O_TS_1	0.0423394
C5H6_O_TS_2	0.0437105
C5H6_O_TS_3	0.0431695
C5H6_O_PC_1	0.02409635
C5H6_O_PC_2	0.0437105
C5H6_O_PC_3	0.04237754
C5H6_HO2_RC_1	0.0193136
C5H6_HO2_RC_2	0.0193236
C5H6_HO2_RC_3	0.0192997
C5H6_HO2_TS_1	0.0379489
C5H6_HO2_TS_2	0.0408391
C5H6_HO2_TS_3	0.0405671
C5H6_HO2_PC_1	0.0251884
C5H6_HO2_PC_2	0.0384445
C5H6_HO2_PC_3	0.0383216
C5H6_OH_RC_1	0.0138952
C5H6_OH_RC_2	0.0139031
C5H6_OH_RC_3	0.0139005
C5H6_OH_TS_1	0.0400587
C5H6_OH_TS_2	0.0432501
C5H6_OH_TS_3	0.025314
C5H6_OH_PC_1	0.0266282
C5H6_OH_PC_2	0.0416137
C5H6_OH_PC_3	0.04171202
C5H5_1	0.03076478
C5H5_2	0.04356202
C5H5_3	0.04360555
CH4	0.0072118
H2O2	0.0096535
H2O	0.0065206

Table S4. T1 diagnostic for species calculated at CCSD(T)/cc-pVTZ

	F	(-)··· F··=			- J F (
	CCSD(T)/cc- pVDZ_HF	CCSD(T)/cc- pVDZ	CCSD(T)/cc- pVTZ_HF	CCSD(T)/cc- pVDZ	CCSD(T)/CBS
Н	-0.499278	-0.499278	-0.499810	-0.499810	-0.499989
C5H6	-192.808652	-193.543895	-192.858119	-193.735882	-193.839118
C5H6_H_TS	-193.280720	-194.029146	-193.330392	-194.223223	-194.327674
C5H5	-192.210472	-192.906230	-192.258469	-193.092768	-193.193091
H2	-1.128703	-1.163382	-1.132966	-1.172333	-1.176617
CH3	-39.563808	-39.715835	-39.577471	-39.760976	-39.784700
C5H6	-192.808652	-193.543895	-192.858119	-193.735882	-193.839118
C5H6_CH3_TS	-232.337245	-233.243984	-232.398760	-233.481821	-233.609648
CH4	-40.198706	-40.387088	-40.213330	-40.438099	-40.465128
C5H5	-192.210472	-192.906230	-192.258469	-193.092768	-193.193091
0	-74.792166	-74.909950	-74.811757	-74.973962	-75.007544
C5H6	-192.808652	-193.543895	-192.858119	-193.735882	-193.839118
C5H6_O_RC	-267.594616	-268.455207	-267.662414	-268.712125	-268.849842
C5H6_O_TS	-267.561022	-268.431838	-267.629491	-268.692450	-268.832229
C5H6_O_PC	-267.599470	-268.471086	-267.671446	-268.737288	-268.879514
C5H5	-192.210472	-192.906230	-192.258469	-193.092768	-193.193091
OH	-75.393787	-75.559304	-75.419172	-75.637723	-75.678488
HO2	-150.187909	-150.557772	-150.237198	-150.712034	-150.792402
C5H6	-192.808652	-193.543895	-192.858119	-193.735882	-193.839118
C5H6_HO2_RC	-343.000241	-344.112743	-343.097122	-344.458783	-344.642767
C5H6_HO2_TS	-342.939513	-344.073780	-343.035369	-344.421949	-344.607503
C5H6_HO2_PC	-342.997534	-344.107907	-343.095477	-344.458892	-344.645592
C5H5	-192.210472	-192.906230	-192.258469	-193.092768	-193.193091
H2O2	-150.785601	-151.192905	-150.837692	-151.357928	-151.444073
OH	-75.393787	-75.559304	-75.419172	-75.637723	-75.678488
C5H6	-192.808652	-193.543895	-192.858119	-193.735882	-193.839118
C5H6_OH_RC	-268.201576	-269.109675	-268.274675	-269.380202	-269.524752
C5H6_OH_TS	-268.180864	-269.096225	-268.254204	-269.368718	-269.514396
C5H6_OH_PC	-268.239419	-269.154172	-268.316358	-269.431964	-269.579887
C5H5	-192.210472	-192.906230	-192.258469	-193.092768	-193.193091
H2O	-76.026684	-76.240983	-76.057056	-76.332156	-76.379319

Table S5. CCSD(T)/cc-pVDZ, CCSD(T)/cc-pVTZ and CCSD(T)/CBS energies of stationary points (unit: Hartrees)

Figure. S10. Molecular structure of C_5H_6

Figure S11. HPL rate constants for hydrogen abstraction reaction of C_5H_6 by H atom

Figure. S12. Potential energy surface (PES) of hydrogen abstraction of C_5H_6 by CH_3 at the CCSD(T)-CBS//M06-2X/6-311+G(d,p) level of theory (in kcal/mol).

Figure. S13. Potential energy surface (PES) of hydrogen abstraction of C_5H_6 by $O(^{3}P)$ at the CCSD(T)-CBS//M06-2X/6-311+G(d,p) level of theory (in kcal/mol).

Figure. S14 Potential energy surface (PES) of hydrogen abstraction of C_5H_6 by OH at the CCSD(T)-CBS//M06-2X/6-311+G(d,p) level of theory (in kcal/mol).

Figure. S15 Potential energy surface (PES) of hydrogen abstraction of C_5H_6 by HO_2 at the CCSD(T)-CBS//M06-2X/6-311+G(d,p) level of theory (in kcal/mol).

CalculationMethod	direct		! direct or low-eiger	nvalue
ReductionMethod	onMethod diagonalization ! threshold (default), sort_out (most a		fault), sort_out (most accurate but costly),	
incremental, sequential				
WellProjectionThreshold	0.2		! default=0.2	
!!!!REMOVED!!!!LowEig	envalueRateReduc	ctionMethod	projection	! [low eigenvalue method only]
diagonalization or projection	on (default)			
!** Grids **				
EnergyStepOverTemperatu	ire .2	! [Discretizat	ion energy step (glob	al relax matrix)] / T
ExcessEnergyOverTemper	ature 30	! [Highest	parrier in the model (global relax matrix)] / T
ModelEnergyLimit[kcal/m	ol]	400	! Highest referen	ce energy used in the calculation (or
ReferenceEnergy[kcal/mol])			
!!				
!** Cutoff **				
WellCutoff	20 ! well	truncation par	ameter : Max { disso	ciation limit (min barrier rel. to bottom of
the well) / T }				
ChemicalEigenvalueMax	0.2	! Max chemic	al eigenvalue / Lowe	st Collision relaxation eigenvalue
ChemicalEigenvalueMin	1e-6		! [Min chemica]	l eigenvalue / Lowest Collision relaxation
eigenvalue] for which direc	ct method is used			
AtomDistanceMin[bohr]	1.5		! minimal interato	omic distance (geometry checking)
!				
!** Reference energy **				
Reactant	r0	! Bimol	ecular species whose	ground energy will be used as a reference
for energy				
!!** Outputs **				
EigenvalueOutput	Rxn1eg.out			
RateOutput	Rxn1.out			
LogOutput	Rxn1.log			
!				
MicroEnerMin[kcal/mol]	0.			
MicroEnerMax[kcal/mol]	20.			
MicroEnerStep[kcal/mol]	0.1			
!				
!				
!*************************************	***************	***********	****	
! MODEL SECTION	ON			
************************	*****	**********	****	
!				
!				
Model				
! 			1, 11, 1	1 1 1
EnergyRelaxation		! Defa	uit collisional energy	relaxation kernel
Exponential	400	! Current	The only possible of	energy relaxation model
Factor[1/cm]	400	! (Delt	a_E_down)^(0) @ st	andard I (300 K)
Power	0.7	! Pow	er n in the expression	$n (Delta_E_down) = (Delta_E_down)^{(0)}$

(T/T0)^(n)			
ExponentCutoff	10	! if	$C(Delta_E) / (Delta_E_down) > value transition probability is zero$
End			
!			
CollisionFrequency		! (Collision frequency model
LennardJones		! Cu	rrently the only possible collisional frequency model based on LJ
potential			
Epsilons[1/cm]	273.8	79.23	! Epsilon_1 and Epsilon_2 (630.4 x kB x Na = 1.25)(cm-1 to K
= x 1.4) Ar and C5H5 (fro	m Lindstedt et	al)	
Sigmas[angstrom]	5.78	3.47	! Sigma_1 and Sigma_2 (from Lindstedt et al)
Masses[amu]	82	39.948	! Masses of the buffer gas molecule and of the complex (check
order)			
End			
!			
!*************************************	*****	**********	****
!*************************************	*****	****	
Well RC			
Species			
RRHO ! fake well			
Geometry[angstrom]	12		
C -0.55567900	-1.17368000	-0.05220500	
C 0.11043400	-0.73324900	1.03283200	
C 0.11043200	0.73325200	1.03283100	
C -0.55568200	1.17367900	-0.05220800	
H -0./2110000	-2.20520900	-0.33019900	
H 0.58683300	-1.34834200	1.78403900	
H 0.38682900	1.34834800	0.22020400	
П -0.72110600	0.00000200	-0.55020400	
С -1.00090900 Н 0.60400000	-0.00000200	1 86420600	
H -0.09409900	-0.00000300	-1.80429000	
0 1 85875600	0.00000400	-0.86404100	
Core RigidRoto	r	-0.00+0+100	
SymmetryFacto	r 1		
End			
Frequencies[1/cm]	30		
73.15837			
120.116846			
154.436028			
333.324398			
506.369779			
664.248046			
714.466983			
789.473203			
793.601038			
888.695958			

911.465447			
936.285904			
947.032922			
950.264283			
994.353693			
1077.576492	2		
1096.912375	5		
1108.057093	3		
1237.613397	7		
1285.534016	5		
1357.123799)		
1373.573059)		
1522.15688	3		
1597 13788	3		
2966 515692	, ,		
3007 91092	7		
3136 680658	2		
3144 442113	3		
3159 567032	, ,		
3166 22889	5		
ZeroEnergy	/ /[kcal/mol]	-1.6	
Electronic	evels[1/cm]	1	
0.0	3	1	
End	5		
End			
LIIU ********	*****	*****	*****
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
····· !********	*****	****	*********************
1 DEACTAI	NTS		
: NLACIAI	************	****	****
·····	****	****	****
Dimelecule	DEACS		
Encoment D	EACT1		
	EACTI		
KKHU Coordenationalise		11	
Geometry[a	ngstrom	11	1 17504600
C	0.00015600	-0.28081200	1.1/594600
C	0.00015600	0.98//9800	0.73475200
C	0.00015600	0.987/9800	-0.73475200
C	0.00015600	-0.28081200	-1.17594600
Н	0.00019600	-0.60649500	2.20697000
Н	0.00032600	1.87799900	1.35003400
Н	0.00032600	1.87799900	-1.35003400
Н	0.00019600	-0.60649500	-2.20697000
С	-0.00053900	-1.21425500	0.00000000
Н	0.87792900	-1.87097300	0.00000000

Η -0.87948000 -1.87034400 0.00000000 Core RigidRotor SymmetryFactor 2.0000000000000 End Frequencies[1/cm] 27 332.084544 509.421787 669.551133 713.253707 790.582689 791.932929 895.1354 912.984855 953.100466 956.303503 956.304958 992.348994 1079.532206 1098.603667 1104.302805 1238.59591 1287.731842 1360.894674 1378.870811 1535.110845 1613.176251 2964.034626 2996.215443 3123.541814 3129.63128 3145.081246 3153.91523 0.0 ZeroEnergy[kcal/mol] ElectronicLevels[1/cm] 1 0.0000000000000E+000 1.000000000000 End |****** Fragment REACT2 Atom Name O ElectronicLevels[1/cm] 3 158.30000000000 3.000000000000000 226.00000000000 1.000000000000000 End GroundEnergy[kcal/mol] 0.0

End

!*************************************	«**
IIII PRODUCTS IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

Bimolecular ProdS	
Fragment Prod1	
RRHO	
Geometry[angstrom] 10	
C -0.00007800 -0.35099600 1.16853400	
C -0.00007800 0.94378900 0.73860100	
C -0.00007800 0.94378900 -0.73860100	
C -0.00007800 -0.35099600 -1.16853400	
Н 0.00038200 -0.69970600 2.18955800	
H 0.00125900 1.83135400 1.35549300	
Н 0.00125900 1.83135400 -1.35549300	
Н 0.00038200 -0.69970600 -2.18955800	
C -0.00010300 -1.18505500 0.00000000	
Н -0.00079100 -2.26648000 0.00000000	
Core RigidRotor	
SymmetryFactor 10.00000000000000	
End	
Frequencies[1/cm] 24	
328.999168	
489.124246	
508.641713	
682.343299	
725.107204	
814.03079	
819.329512	
894.783969	
907.829111	
910.64279	
934.474138	
1035.7175	
1050.867445	
1120.71666	
1193.86533	
1255.526193	
1355.146163	
1475.063286	
1511.608909	
3127.261085	
3143.895518	
3152.533174	
3164.305967	
3172.474628	

ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0.000000000000E+000 2.000000000000 End Fragment Prod2 RRHO Geometry[angstrom] 2 Ο 0.00000000 0.0000000 0.10800300 0.00000000 Η 0.0000000 -0.86402400 Core RigidRotor 1.0000000000000000 SymmetryFactor End Frequencies[1/cm] 1 3653.178498 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0.000000000000 2.000000000000000 End GroundEnergy[kcal/mol] -18.9 End ***** Barrier B1 REACS RC RRHO Stoichiometry C5H6O1 Core PhaseSpaceTheory FragmentGeometry[angstrom] 11 С 0.00015600 -0.28081200 1.17594600 С $0.00015600 \quad 0.98779800 \quad 0.73475200$ С 0.00015600 0.98779800 -0.73475200 С 0.00015600 -0.28081200 -1.17594600 Η 0.00019600 -0.60649500 2.20697000 Н 0.00032600 1.87799900 1.35003400 Η 0.00032600 1.87799900 -1.35003400 Η 0.00019600 -0.60649500 -2.20697000 С -0.00053900 -1.21425500 0.00000000 Η 0.87792900 -1.87097300 0.00000000 -0.87948000 -1.87034400 Η 0.00000000 FragmentGeometry[angstrom] 1 $0.0000000 \quad 0.0000000 \quad 0.0000000$ 0 SymmetryFactor 1.0000000000000000 PotentialPrefactor[au] 48.7 PotentialPowerExponent 6 End Frequencies[1/cm] 27

18

332.084544			
509.421787			
669.551133			
713.253707			
790.582689			
791.932929			
895.1354			
912.984855			
953.100466			
956.303503			
956.304958			
992.348994			
1079.53220	6		
1098.60366	7		
1104.30280	5		
1238.59591			
1287.73184	2		
1360.89467	4		
1378.87081	1		
1535.11084	5		
1613.17625	1		
2964.03462	6		
2996.21544	3		
3123.54181	4		
3129.63128			
3145.08124	6		
3153.91523			
ZeroEnergy	[kcal/mol] 0		
Electronicl	Levels[1/cm]	3	
0.0000000	000000000	5.000000000	0000000
158.30000	000000001	3.000000000	0000000
226.00000	000000000	1.000000000	0000000
End			
!*******	*********	*****	****
Barrier B2	RC ProdS		
RRHO			
Geometry[a	ingstrom]	12	
С	-0.27249900	1.15588100	0.35712300
С	-1.35393900	0.80532400	-0.36264600
С	-1.44421800	-0.66384500	-0.41646700
С	-0.41501700	-1.19595500	0.26883300
Н	0.07286000	2.15564000	0.57555100
Н	-2.05553400	1.48134800	-0.83215600
Н	-2.22196700	-1.21252200	-0.93017700
Н	-0.19704600	-2.24399700	0.41182200
С	0.42538600	-0.08570100	0.78536300

```
Н
           1.43564600 -0.10670900 0.12115700
Н
           0.80936000 -0.14575400
                                   1.80356100
0
           2.56480100 -0.00277800 -0.61787400
  Core
        RigidRotor
      SymmetryFactor 1.0000000000000000
  End
  Tunneling Eckart
   ImaginaryFrequency[1/cm] 1066.712492
   WellDepth[kcal/mol]
                           7.4
   WellDepth[kcal/mol]
                           24.7
  End
  Frequencies[1/cm] 29
75.219329
103.837724
376.958005
514.246276
667.868086
698.143823
723.480126
773.605846
798.885695
872.309845
925.11228
935.377208
945.747187
955.226512
998.779027
1033.792147
1078.756982
1104.543365
1198.651989
1232.319622
1278.625579
1362.374894
1525.828527
1587.657006
3044.219191
3122.575985
3136.889014
3148.928945
3158.70509
ZeroEnergy[kcal/mol] 5.8
ElectronicLevels[1/cm]
                                 2
 0.0000000000000000
                        3.00000000000000000
 114.200000000000000
                        3.00000000000000000
End
```

! ! ! END OF INPUT End GLOBAL SECTION, MESS for c-C5H6+OH 1 ! ! 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 TemperatureList[K] 2000 2100 2200 2300 2400 2500 PressureList[atm] 0.01 0.1 1 10 100 ! !** Methods ** CalculationMethod direct ! direct or low-eigenvalue ReductionMethod ! threshold (default), sort_out (most accurate but costly), diagonalization incremental, sequential 0.2 WellProjectionThreshold ! default=0.2 !!!!REMOVED!!!!LowEigenvalueRateReductionMethod projection ! [low eigenvalue method only] diagonalization or projection (default) !** Grids ** EnergyStepOverTemperature .2 ! [Discretization energy step (global relax matrix)] / T ExcessEnergyOverTemperature 30 ! [Highest barrier in the model (global relax matrix)] / T ModelEnergyLimit[kcal/mol] 400 ! Highest reference energy used in the calculation (or ReferenceEnergy[kcal/mol]) !! !** Cutoff ** WellCutoff 20 ! well truncation parameter : Max { dissociation limit (min barrier rel. to bottom of the well) / TChemicalEigenvalueMax 0.2 ! Max chemical eigenvalue / Lowest Collision relaxation eigenvalue ChemicalEigenvalueMin 1e-6 ! [Min chemical eigenvalue / Lowest Collision relaxation eigenvalue] for which direct method is used AtomDistanceMin[bohr] 1.5 ! minimal interatomic distance (geometry checking) ! !** Reference energy ** Reactant ! Bimolecular species whose ground energy will be used as a reference r0 for energy 21

<pre>!!** Outputs **</pre>		
EigenvalueOutput	Rxn1eg.out	
RateOutput	Rxn1.out	
LogOutput	Rxn1.log	
!		
MicroEnerMin[kcal/mol]	0.	
MicroEnerMax[kcal/mol]	20.	
MicroEnerStep[kcal/mol]	0.1	
!		
!		
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!! :******************	*****
! MODEL SECTIO	DN	
!*********	******	******
!		
!		
Model		
!		
EnergyRelaxation		! Default collisional energy relaxation kernel
Exponential		! Currently the only possible energy relaxation model
Factor[1/cm]	400	! (Delta_E_down)^(0) @ standard T (300 K)
Power	0.7	! Power n in the expression (Delta_E_down) = (Delta_E_down)^(0)
(T/T0)^(n)		
ExponentCutoff	10	$!$ if (Delta_E) / (Delta_E_down) > value transition probability is zero
End		
!		
CollisionFrequency		! Collision frequency model
LennardJones		! Currently the only possible collisional frequency model based on LJ
potential		
Epsilons[1/cm]	273.8 79.23	! Epsilon_1 and Epsilon_2 (630.4 x kB x Na = 1.25)(cm-1 to K
= x 1.4) Ar and C5H5 (from	Lindstedt et al)	
Sigmas[angstrom]	5.78 3.47	! Sigma_1 and Sigma_2 (from Lindstedt et al)
Masses[amu]	82 39.948	! Masses of the buffer gas molecule and of the complex (check
order)		
End		
!		
!**************************************	********************	******
***************************************	*****	
Well RC		
Species		
RRHO ! fake well	10	
Geometry[angstrom]	15	<i>1110</i>
C = -0.1/492000	0.29421800 1.1235	0400
C = 0.07280200	0.97912200 0.7924	9400 97200
0.97269200 -	0.7/7/0100 -0.4012	22

```
С
           1.19562000 0.29114000 -0.78561900
Н
          -0.79494700 0.61879100
                                  1.94692000
Н
          -0.22965900 -1.86686400 1.30392100
Η
           1.35841300 -1.86943100 -0.88143900
Η
           1.79456700 0.61336400 -1.62615200
С
           0.50415800 1.22625700 0.16444500
Η
          -0.21244000 1.88525200 -0.33735800
Н
           1.22661400 1.87267400 0.67803500
0
          -2.17715200 0.00020100 -0.66370100
Η
          -1.41232700 -0.37166500 -1.13598800
             RigidRotor
    Core
        SymmetryFactor 1
    End
Frequencies[1/cm]
                     33
73.715053
102.309295
148.669863
304.14641
338.682581
475.85581
512.937358
667.739852
720.032746
791.806635
795.653655
888.681505
915.272891
934.922472
950.779159
951.765552
991.915986
1079.616984
1098.783117
1099.520899
1235.188494
1287.928655
1358.850593
1376.02066
1523.717128
1602.087696
2953.453575
2995.408015
3113.832793
3123.791007
3142.512686
3148.914977
```

3633.245289
ZeroEnergy[kcal/mol] -3.1
ElectronicLevels[1/cm] 1
0.0 2
End
End
!*************************************
! REACTANTS
!*************************************
!*************************************
Bimolecular REACS
Fragment REACT1
RRHO
Geometry[angstrom] 11
C 0.00015600 -0.28081200 1.17594600
C 0.00015600 0.98779800 0.73475200
C 0.00015600 0.98779800 -0.73475200
C 0.00015600 -0.28081200 -1.17594600
Н 0.00019600 -0.60649500 2.20697000
Н 0.00032600 1.87799900 1.35003400
Н 0.00032600 1.87799900 -1.35003400
Н 0.00019600 -0.60649500 -2.20697000
C -0.00053900 -1.21425500 0.00000000
Н 0.87792900 -1.87097300 0.00000000
Н -0.87948000 -1.87034400 0.00000000
Core RigidRotor
SymmetryFactor 2.0000000000000
End
Frequencies[1/cm] 27
332.084544
509.421787
669.551133
713.253707
790.582689
791.932929
895.1354
912.984855
953.100466
956.303503
956.304958
992.348994
1079.532206
1098.603667

1104.302805 1238.59591 1287.731842 1360.894674 1378.870811 1535.110845 1613.176251 2964.034626 2996.215443 3123.541814 3129.63128 3145.081246 3153.91523 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0.000000000000E+000 1.000000000000 End |***** Fragment REACT2 RRHO Geometry[angstrom] 2 0.00000000 0 0.0000000 0.10800300 Η 0.00000000 0.0000000 -0.86402400 RigidRotor Core SymmetryFactor 1.00000000000000 End Frequencies[1/cm] 1 3653.178498 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 2 0.000000000000E+000 2.000000000000 140.000000000000 End GroundEnergy[kcal/mol] 0.0 End **!!!!** PRODUCTS **Bimolecular ProdS** Fragment Prod1 RRHO Geometry[angstrom] 10 С -0.00007800 -0.35099600 1.16853400 С -0.00007800 0.94378900 0.73860100 С $-0.00007800 \quad 0.94378900 \quad -0.73860100$ С -0.00007800 -0.35099600 -1.16853400

Н	0.00038200	-0.69970600	2.18955800
Н	0.00125900	1.83135400	1.35549300
Н	0.00125900	1.83135400	-1.35549300
Н	0.00038200	-0.69970600	-2.18955800
С	-0.00010300	-1.18505500	0.00000000
Н	-0.00079100	-2.26648000	0.00000000
Core	RigidRoto	r	
Sy	ymmetryFacto	r 10.000000	0000000
End			
Frequenc	ies[1/cm]	24	
328.999168			
489.124246			
508.641713			
682.343299			
725.107204			
814.03079			
819.329512			
894.783969			
907.829111			
910.64279			
934.474138			
1035.7175			
1050.867445	5		
1120.71666			
1193.86533			
1255.526193	3		
1355.146163	3		
1475.063286	5		
1511.608909)		
3127.261085	5		
3143.895518	3		
3152.533174	1		
3164.305967	7		
3172.474628	3		
ZeroEnergy	y[kcal/mol]	0.0	
ElectronicI	Levels[1/cm]	1	
0.00000000)0000000E+00	00 2.0000000	0000000
End			
!*******	*****	*********	****
Fragment Pr	od2 !H2O		
RRHO			
Geometry[a	ngstrom]	3	
0	0.00000000	0.00000000	0.11656500
Н	0.00000000	-0.76161600	-0.46625800
Н	0.00000000	0.76161600	-0.46625800
Core	RigidRotor	r	

SymmetryFactor 2.0000000000000 End Frequencies[1/cm] 3 1547.361266 3779.007577 3881.837956 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0.000000000000 1.000000000000000 End GroundEnergy[kcal/mol] -34.9 End |***** Barrier B1 REACS RC RRHO Stoichiometry C5H7O1 Core PhaseSpaceTheory FragmentGeometry[angstrom] 11 С 0.00015600 -0.28081200 1.17594600 С $0.00015600 \quad 0.98779800 \quad 0.73475200$ С 0.00015600 0.98779800 -0.73475200 С 0.00015600 -0.28081200 -1.17594600 Н $0.00019600 \quad -0.60649500 \quad 2.20697000$ Η 0.00032600 1.87799900 1.35003400 Η 0.00032600 1.87799900 -1.35003400 Η 0.00019600 -0.60649500 -2.20697000 С -0.00053900 -1.21425500 0.00000000 Н 0.87792900 -1.87097300 0.00000000 -0.87948000 -1.87034400Η 0.00000000 FragmentGeometry[angstrom] 2 0 $0.0000000 \quad 0.0000000 \quad 0.10800300$ Η 0.0000000 0.0000000 -0.86402400 SymmetryFactor 1.0000000000000000 PotentialPrefactor[au] 73.8 PotentialPowerExponent 6 End Frequencies[1/cm] 28 332.084544 509.421787 669.551133 713.253707 790.582689 791.932929 895.1354 912.984855

953.100	466				
956.303	956.303503				
956.304	958				
992.348	994				
1079.53	2206				
1098.60	3667				
1104.30	2805				
1238.59	591				
1287.73	1842				
1360.89	4674				
1378.87	0811				
1535.11	0845				
1613.17	6251				
2964.03	4626				
2996.21	5443				
3123.54	1814				
3129.63	128				
3145.08	1246				
3153.91	523				
3653.17	8498				
ZeroEn	ergy[kcal/mol] 0	1			
Electro	onicLevels[1/cm]	2			
0.0000	000000000000000000000000000000000000000	2.000000000	0000000		
140.0000000000000000		2.00000000000000000			
End					
!*****	*****	*******	****		
Barrier	B2 RC ProdS				
RRHO					
Geomet	try[angstrom]	13			
С	-0.29553000	1.13319100	0.42538900		
С	-1.33844000	0.84376100	-0.37251700		
С	-1.46789400	-0.61888300	-0.48620600		
С	-0.50090800	-1.20601000	0.24191600		
Н	0.06056100	2.11435100	0.70481900		
Н	-1.98966900	1.55795100	-0.85827300		
Н	-2.22751200	-1.12544500	-1.06625100		
Н	-0.32421300	-2.26558600	0.35672500		
С	0.34087400	-0.14529400	0.86367100		
Н	1.41112800	-0.20529900	0.40161600		
Н	0.53611600	-0.24509000	1.93438700		
0			0.50044100		
0	2.51548800	-0.02248100	-0.52944100		
Н	2.51548800 1.98107000	-0.02248100 0.30837900	-0.52944100 -1.27101400		
H Core	2.51548800 1.98107000 RigidRotor	-0.02248100 0.30837900	-0.52944100		
H Core	2.51548800 1.98107000 RigidRotor SymmetryFactor	-0.02248100 0.30837900 1.0000000000	-0.32944100 -1.27101400		
H Core End	2.51548800 1.98107000 RigidRotor SymmetryFactor	-0.02248100 0.30837900 1.0000000000	-0.52944100 -1.27101400		

```
Group 13
           10
                   12
Axis
Symmetry
                1
Potential[kcal/mol]
                       15
0.1388805
0.093361554
0.030723
0
0.1665939
0.4824138
0.6059328
0.4824138
0.1665939
0
0.030723
0.093361554
0.1388805
0.1702305
0.169917
End
  Tunneling Eckart
   ImaginaryFrequency[1/cm]
                               986.089099
   WellDepth[kcal/mol]
                            3.9
   WellDepth[kcal/mol]
                            35.7
  End
 Frequencies[1/cm] 31
71.517615
208.943432
304.436149
508.921364
636.856022
711.394314
734.292716
784.975992
798.227065
851.508486
909.054027
923.157536
938.372762
942.582271
994.62345
1009.80589
1078.22193
1100.586638
1218.15219
1239.629833
```

1283.536689 1364.222647 1459.211643 1532.509499 1598.624117 3010.91298 3114.465718 3125.821896 3145.649763 3150.665148 3654.645138 ZeroEnergy[kcal/mol] 0.8 ElectronicLevels[1/cm] 1 0.00000000000000000 2.00000000000000000 End ! ! ! ١ END OF INPUT End GLOBAL SECTION, MESS for c-C5H6+HO2 |******* ! ! 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 TemperatureList[K] 2000 2100 2200 2300 2400 2500 PressureList[atm] 0.01 0.1 1 10 100 ! !** Methods ** CalculationMethod direct ! direct or low-eigenvalue ReductionMethod diagonalization ! threshold (default), sort out (most accurate but costly), incremental, sequential WellProjectionThreshold 0.2 ! default=0.2 !!!!REMOVED!!!!LowEigenvalueRateReductionMethod projection ! [low eigenvalue method only] diagonalization or projection (default) !** Grids ** EnergyStepOverTemperature .2 ! [Discretization energy step (global relax matrix)] / T ExcessEnergyOverTemperature ! [Highest barrier in the model (global relax matrix)] / T 30

ModelEnergyLimit[kcal/m	iol]	400	! Highest reference energy used in the calculation (or
ReferenceEnergy[kcal/mol])		
!!			
!** Cutoff **			
WellCutoff	20 ! well	truncation par	ameter : Max { dissociation limit (min barrier rel. to bottom of
the well) / T }			
ChemicalEigenvalueMax	0.2	! Max chemic	al eigenvalue / Lowest Collision relaxation eigenvalue
ChemicalEigenvalueMin	1e-6		! [Min chemical eigenvalue / Lowest Collision relaxation
eigenvalue] for which dire	ct method is used		
AtomDistanceMin[bohr]	1.5		! minimal interatomic distance (geometry checking)
!			
!** Reference energy **			
Reactant	r0	! Bimo	ecular species whose ground energy will be used as a reference
for energy			
!!** Outputs **			
EigenvalueOutput	Rxn1eg.out		
RateOutput	Rxn1.out		
LogOutput	Rxn1.log		
!	C		
MicroEnerMin[kcal/mol]	0.		
MicroEnerMax[kcal/mol]	20.		
MicroEnerStep[kcal/mol]	0.1		
!			
!			
!*************************************	*****	*****	****
! MODEL SECTI	ON		
!****	*****	*****	****
1			
Model			
l			
EnergyRelayation		l Def	ult collisional energy relayation kernel
Exponential		! Curren	the only possible energy relaxation model
Factor[1/cm]	400	. Curren	a E down) $^{(0)}$ @ standard T (300 K)
Power	0.7	! Pou	$a_1 = 1$ down) (0) (0) standard 1 (500 R) er n in the expression (Delta F down) = (Delta F down)^(())
$(T/T0)^{(n)}$	0.7	. 10%	
ExponentCutoff	10	l if (D	alta $E / (Delta E down) > value transition probability is zero$
Exponenteuton	10	: II (D	ena_L)/ (Dena_L_down) > value transmon probability is zero
Lind 1			
CollisionEroquonou		L Cal	licion frequency model
LennardIones			nsion nequency model
notential		: Curre	arry the only possible confisional frequency model based on LJ
Ensilons[1/sm]	072 0 70 C	2	Englan 1 and Englan 2 (620 $A_{\rm T}$ kD $_{\rm T}$ N ₂ = 1.25)(
Epsilons[1/cm] = x 1 4) Ar and C5115 (f)	2/3.8 / 9.2	3	Epsnon_1 and Epsnon_2 ($030.4 \times KB \times Na = 1.23$)(cm-1 to K
-x 1.4) Ar and C5H5 (from	in Linusieut et al)		

Sigmas	[angstrom]	5.78	3.47	! S
Masses	[amu]	99	39.948	! M
order)				
End				
!				
!*******	*******	*******	******	****
!*******	******	*******	****	
Well RC				
Species				
RRHO !	fake well			
Geometry[a	ingstrom]	14		
С	0.46745900	0.33633100	1.17476800	
С	0.99260800	-0.86739500	0.87241800	
С	1.56145300	-0.81965400	-0.48516500	
С	1.37469100	0.40982400	-0.99468000	
Н	-0.02202600	0.61671400	2.09672700	
Н	1.01350400	-1.73481400	1.51948200	
Н	2.04551000	-1.65177100	-0.97789000	
Н	1.67764900	0.75420400	-1.97332400	
С	0.67249000	1.26821300	0.01621200	
Н	-0.27341800	1.67771000	-0.35749400	
Н	1.28820500	2.12818800	0.30701500	
0	-2.47871700	0.31790700	0.05443700	
0	-1.90795400	-0.68474200	-0.55626500	
Н	-1.04825800	-0.81946700	-0.10122000	
Core	RigidRoto			
S	ymmetryFacto	r 1		
End				
Frequencies	[1/cm] 3	6		
47.368204				
58.391963				
93.889598				
110.080644				
173.715166				
344.905616				
421.403793				
516.19423				
671.429829				
722.087303				
792.297067				
796.353025				
894.726157				
909.773961				
942.314551				
950.704469				
956.307771				

! Sigma_1 and Sigma_2 (from Lindstedt et al)	
---	--

! Masses of the buffer gas molecule and of the complex (check

986.919031			
1079.202212	2		
1097.77548	1		
1100.289624	4		
1234.373694	4		
1236.98357	6		
1284.656942	2		
1357.698524	4		
1375.131364	4		
1438.86899	7		
1530.348048	8		
1607.025772	2		
2965.44374	5		
2997.773942	2		
3130.56393	5		
3142.55148	6		
3159.409213	3		
3165.184302	2		
3441.815692	2		
ZeroEnerg	y[kcal/mol]	-5.9	
ElectronicI	Levels[1/cm]	1	
0.0	2		
End			
End			
!*******	******	*****	*****
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			!!!
!********	******	*****	*****
! REACTA	NTS		
!********	********	*****	*****
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			!!!
!********	**********	*****	*****
Bimolecula	r REACS		
Fragment R	EACT1		
RRHO			
Geometry[a	ngstrom]	11	
С	0.00015600	-0.28081200	1.17594600
С	0.00015600	0.98779800	0.73475200
С	0.00015600	0.98779800	-0.73475200
С	0.00015600	-0.28081200	-1.17594600
Н	0.00019600	-0.60649500	2.20697000
Н	0.00032600	1.87799900	1.35003400
Н	0.00032600	1.87799900	-1.35003400
Н	0.00019600	-0.60649500	-2.20697000
С	-0.00053900	-1.21425500	0.00000000
Н	0.87792900	-1.87097300	0.00000000
Н	-0.87948000	-1.87034400	0.00000000

Core RigidRotor SymmetryFactor 2 End Frequencies[1/cm] 27 332.084544 509.421787 669.551133 713.253707 790.582689 791.932929 895.1354 912.984855 953.100466 956.303503 956.304958 992.348994 1079.532206 1098.603667 1104.302805 1238.59591 1287.731842 1360.894674 1378.870811 1535.110845 1613.176251 2964.034626 2996.215443 3123.541814 3129.63128 3145.081246 3153.91523 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0.000000000000E+000 1.000000000000 End ***** Fragment REACT2 RRHO Geometry[angstrom] 3 0 0.05494400 -0.59907100 0.00000000 Н -0.87910200 -0.873068000.00000000 Ο 0.05494400 0.70820400 0.00000000 Core RigidRotor SymmetryFactor 1 End Frequencies[1/cm] 3

1218.783175 1416.714003 3596.0228 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0.000000000000E+000 2.000000000000 End GroundEnergy[kcal/mol] 0.0 End **!!!!** PRODUCTS **Bimolecular ProdS** Fragment Prod1 RRHO Geometry[angstrom] 10 С -0.00007800 -0.350996001.16853400 С -0.00007800 0.94378900 0.73860100 С $-0.00007800 \quad 0.94378900 \quad -0.73860100$ С -0.00007800 -0.35099600 -1.16853400 Η $0.00038200 \quad -0.69970600 \quad 2.18955800$ Η 0.00125900 1.83135400 1.35549300 Η 0.00125900 1.83135400 -1.35549300 Н 0.00038200 -0.69970600 -2.18955800 С -0.00010300 -1.18505500 0.00000000 Η -0.00079100 -2.26648000 0.00000000 RigidRotor Core SymmetryFactor 10 End Frequencies[1/cm] 24 328.999168 489.124246 508.641713 682.343299 725.107204 814.03079 819.329512 894.783969 907.829111 910.64279 934.474138 1035.7175 1050.867445 1120.71666 1193.86533 1255.526193

1355.146163 1475.063286 1511.608909 3127.261085 3143.895518 3152.533174 3164.305967 3172.474628 0.0 ZeroEnergy[kcal/mol] ElectronicLevels[1/cm] 1 0.000000000000E+000 2.000000000000 End |*********** Fragment Prod2 !H2O2 RRHO Geometry[angstrom] 4 0 0.0000000 0.71225200 -0.05261700 Н 0.81812000 0.90119100 0.42093700 0 0.0000000 -0.71225200 -0.05261700 -0.81812000 -0.90119100 0.42093700Η RigidRotor Core SymmetryFactor 2 End Frequencies[1/cm] 6 420.136876 1005.234183 1297.911604 1445.39603 3746.028159 3746.69969 ZeroEnergy[kcal/mol] 0.0 ElectronicLevels[1/cm] 1 0.000000000000 1.000000000000000 End GroundEnergy[kcal/mol] -4.2 End Barrier B1 REACS RC RRHO Stoichiometry C5H7O1 Core PhaseSpaceTheory FragmentGeometry[angstrom] 11 С 0.00015600 -0.28081200 1.17594600 С $0.00015600 \quad 0.98779800 \quad 0.73475200$ С 0.00015600 0.98779800 -0.73475200

```
С
           0.00015600 -0.28081200 -1.17594600
Н
           0.00019600 \quad -0.60649500 \quad 2.20697000
Η
           0.00032600 1.87799900
                                    1.35003400
Η
           0.00032600 1.87799900 -1.35003400
Η
           0.00019600 -0.60649500 -2.20697000
С
           -0.00053900 -1.21425500
                                    0.00000000
Н
           0.87792900 - 1.87097300
                                    0.00000000
Н
           -0.87948000 -1.87034400
                                    0.00000000
FragmentGeometry[angstrom] 3
0
           0.05494400 - 0.59907100
                                    0.00000000
Н
                                    0.00000000
           -0.87910200 -0.87306800
0
           0.05494400 0.70820400
                                    0.00000000
SymmetryFactor 1
PotentialPrefactor[au] 154.4
PotentialPowerExponent 6
End
Frequencies[1/cm]
                      30
332.084544
509.421787
669.551133
713.253707
790.582689
791.932929
895.1354
912.984855
953.100466
956.303503
956.304958
992.348994
1079.532206
1098.603667
1104.302805
1238.59591
1287.731842
1360.894674
1378.870811
1535.110845
1613.176251
2964.034626
2996.215443
3123.541814
3129.63128
3145.081246
3153.91523
1218.783175
1416.714003
```

3596.0228 ZeroEnergy[kcal/mol] 0 ElectronicLevels[1/cm] 1 End |*********** Barrier B2 RC ProdS RRHO 14 Geometry[angstrom] С $-0.76605200 \quad 0.56735600 \quad -1.12287900$ С -1.27413700 -0.65361100 -0.83538900 С -1.32357600 -0.81386300 0.62430100С -0.84372800 0.31213000 1.20676400 Η -0.59976000 0.99312200 -2.10202900Η -1.61012300 -1.39326500 -1.54998000 Η -1.68170800 -1.69625400 1.13636300 Н -0.73007300 0.49705000 2.26452900С -0.39182300 1.21574800 0.14921800 Η 0.87510300 0.94105800 0.14696800 Η -0.38659700 2.29574500 0.26724900 $2.00726700 \quad 0.40090700 \quad -0.02541200$ Ο 0 1.77233100 -0.92608100 0.08840800 Η 1.49226800 -1.20262400 -0.79915300 RigidRotor Core SymmetryFactor 1 End Rotor Hindered Group 14 Axis 12 13 Symmetry 1 Potential[kcal/mol] 15 0 0.9405 3.67422 7.90647 12.77199 7.36725 3.27921 0.73359 0.01254 0.068 1.07844 3.65543 7.41741 3.65552 1.07848

End Rotor Hindered Group 13 14 Axis 10 12 Symmetry 1 Potential[kcal/mol] 15 0 0.084108915 0.258411153 0.568339761 0.959242284 1.072457166 1.135157166 1.166507166 1.153967166 1.172777166 1.222937166 1.216667166 0.956107284 0.642607284 0.102918915 End Tunneling Eckart ImaginaryFrequency[1/cm] 1782.087395 WellDepth[kcal/mol] 19 WellDepth[kcal/mol] 17.3 End Frequencies[1/cm] 33 148.912945 225.144857 451.516667 458.715619 535.498879 637.959882 719.275079 726.836714 776.598975 808.591903 885.52658 909.386543 928.026548 932.833965 941.965157 978.888207 1006.699077

```
1069.767701
1105.85335
1118.186803
1238.319363
1283.826331
1364.424116
1378.656247
1403.81019
1491.234932
1552.538641
3081.292591
3116.696427
3127.661986
3150.120396
3154.617995
3629.828173
ZeroEnergy[kcal/mol] 13.1
ElectronicLevels[1/cm]
                     1
2.00000000000000000
End
!
!
!
****
!
      END OF INPUT
*****
!
!
```

End

References

- O.J. Orient and S.K. Srivastava. Electron impact ionisation of H₂O, CO, CO₂ and CH₄. J. Phys. B-At. Mol. Opt., 20:3923–3936, 1987.
- [2] W.L. Fitch and A.D. Sauter. Calculation of relative electron impact total ionization cross sections for organic molecules. Anal. Chem., 55(6):832–835, 1983.
- [3] H. Nishimura and H. Tawara. Total electron impact ionization cross sections for simple hydrocarbon molecules. J. Phys. B-At. Mol. Opt., 27(10):2063-2074, 1994.
- [4] Y.K. Kim, K.K. Irikura, M.E. Rudd, M.A. Ali, P.M. Stone, J. Chang, J.S. Coursey, R.A. Dragoset, A.R. Kishore, K.J. Olsen, A.M. Sansonetti, G.G. Wiersma, D.S. Zucker, and M.A. Zucker. Electron-impact cross sections for ionization and excitation. https://physics.nist.gov/PhysRefData/Ionization/intro.html, accessed 15th October 2017.
- [5] D. Rapp, P. Englander-Golden, and D.D. Briglia. Cross sections for dissociative ionization of molecules by electron electron-impact. J. Chem. Phys., 42:4081, 1965.
- [6] S.A. Skeen, B. Yang, H.A. Michelsen, J.A. Miller, A. Violi, and N. Hansen. Studies of laminar opposedflow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry. *Proc. Combust. Inst.*, 34(1):1067–1075, 2013.
- [7] Q. Mao, L. Cai, and H. Pitsch. Theoretical analysis and kinetic modeling on hydrogen addition and abstraction by h radical of 1,3-cyclopentadiene and the associated chain-branching reactions, 2019.
- [8] H.A. Gueniche, P.A. Glaude, R. Fournet, and F. Battin-Leclerc. Rich methane premixed laminar flames doped by light unsaturated hydrocarbons: III. Cyclopentene. Combust. Flame, 152(1):245–261, 2008.
- [9] W. Pejpichestakul, E. Ranzi, M. Pelucchi, A. Frassodati, A. Cuoci, and T. Faravelli. Examination of a soot model in premixed laminar flames at fuel-rich conditions. *Proc. Combust. Inst.*, pages 2–15, 2018.
- [10] C. Ji, R. Zhao, B. Li, and F.N. Egolfopoulos. Propagation and extinction of cyclopentadiene flames. Proc. Comb. Inst., 34(1):787–794, 2013.
- [11] R.G. Butler and I. Glasmann. Cyclopentadiene combustion in a plug flow reactor near 1150 K. Proc. Combust. Inst., 32(1):395–402, 2009.