Mechanism of upconversion luminescence enhancement in Yb³⁺/Er³⁺ co-doped Y₂O₃ through Li⁺ incorporation

Xiongfeng Yang^a, Min Liu^b, Jiandang Liu^c, Yuanhua Xia^d, Weiwei Ji^a, Zhiang Li^a, Jifang

Chen^a, Liu Liu^a, Luyuan Hao^a, Bingbing Dong,^a Simeon Agathopoulos^e, Xin Xu^{a,*}

^aCAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.

^bSchool of Materials Science & Engineering, Shanghai institute of technology, 100 Haiquan Road, Shanghai, 201418, PR China,

^cState Key Laboratory of Particle Detection and Electronic, University of Science and Technology of China, Hefei, Anhui 230026, PR China.

^dInstitute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China.

^eDepartment of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina, Greece.

*Correspondence: xuxin@ustc.edu.cn (Prof. Xin Xu)

Atom	Site	Х	У	Z	Occupancy	U _{iso}
Y	8a	0.25	0.25	0.25	0.9611	0.03
Y	24d	0.9716	0	0.25	0.9763	0.00005
Li	8a	0.25	0.25	0.25	0.0389	0.03
Li	24d	0.9716	0	0.25	0.0237	0.00005
О	48e	0.3904	0.1530	0.3811	0.99	0.0001

Table S1. Rietveld fitting parameters for the Li6

Atom	Site	Х	у	Z	Occupancy	U _{iso}
Y	8a	0.25	0.25	0.25	0.9287	0.01204
Y	24d	0.9688	0	0.25	0.9124	0.0089
Li	8a	0.25	0.25	0.25	0.0613	0.01204
Li	24d	0.9688	0	0.25	0.0876	0.0089
0	48e	0.3908	0.1514	0.3802	0.9410	0.0097

Table S2. Rietveld fitting parameters for the Li12

The measured diffraction patterns of X-ray diffraction and neutron diffraction were refined by Rietveld analysis using the GSAS software.¹

Sample	O ²⁻ (%)	O ₂ ²⁻ /O ⁻	-OH/O ₂ (%)	CO_3^{2-}/CO_2 (%)
Li0	34.4	8.4	41.0	16.2
Li6	25.4	9.3	44.7	20.6
Li12	8.1	11.2	57.8	22.9

Table S3. Ratio of various oxygen species, estimated from the relative area of the fitted subpeaks.

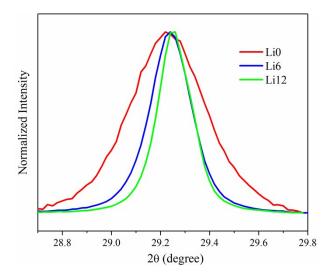


Figure S1. Dependence of the FWHM* of a given X-ray diffraction peak on Li^+ content. *:The average crystallite size of the powders (*D*) was calculated by using the Scherrer's equation

$\frac{K\lambda}{D=\beta cos\theta}$

where *K* is the Scherrer's shape factor constant (0.94), λ is the wavelength of the X-ray ($\lambda = 1.5406$ Å), and β is the full-width at half maximum (FWHM), in radians, of the diffraction peak at a certain value of 2 θ .

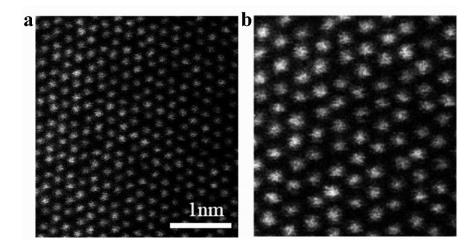


Figure S2. HAADF-STEM image from the Li12 sample (a), and (b) local enlarged view of the image in (a).

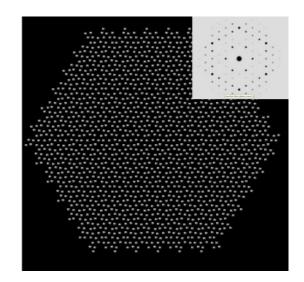


Figure S3. Arrangement of Y atoms along the [111] axis projection in the Y_2O_3 supercell. The inset shows the SAED pattern in the [111] zone axis in Y_2O_3 (by crystalmaker).

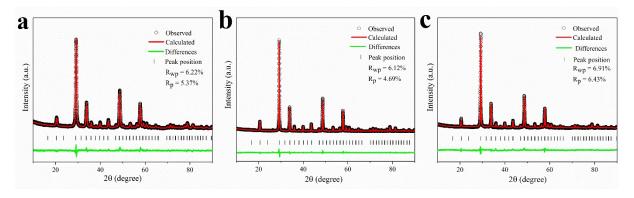


Figure S4. X-ray diffraction patterns and refinement for the samples $(Y_{1-X}Li_X)_2O_3$ with X = (a) 0.00, (b) 0.06, and (c) 0.12.

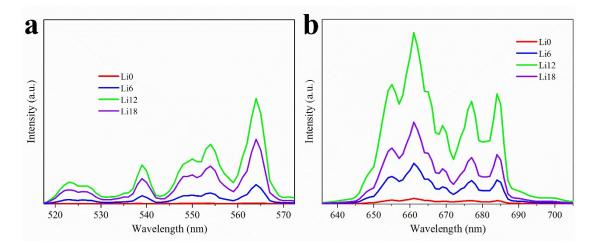


Figure S5. Magnification of room temperature upconversion spectra in (a) the green light, (b) the red light.

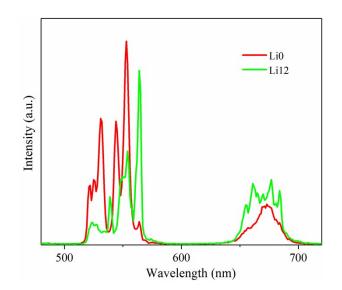


Figure S6. Room temperature upconversion spectra of $(Y_{0.98-X}Er_{0.02}Li_X)_2O_3$ powders (X = 0.00 and 0.12) under the excitation of a 980 nm CW laser with the same pump power.

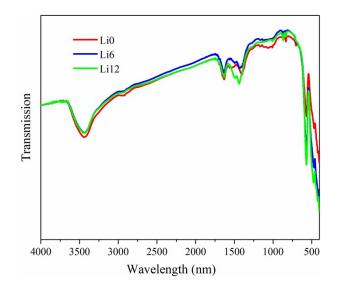


Figure S7. FT-IR spectra of the samples.

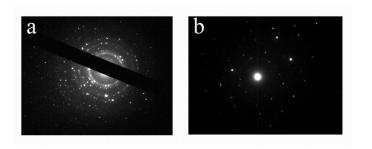


Figure S8. SAED patterns of the samples (a) Li0 and (b) Li12.

Reference

1 L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louër and P. Scardi, Rietveld refinement guidelines, *Journal of Applied Crystallography*, 1999, **32**, 36–50.