Supporting Information: BOKEI: Bayesian Optimization Using Knowledge of Correlated Torsions and Expected Improvement for Conformer Generation

Lucian Chan¹, Geoffrey R. Hutchison², and Garrett M. Morris¹

¹Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK ²Department of Chemistry and Chemical Engineering, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA

Appendices 1: List of correlated torsion SMARTS patterns

The correlated torsion SMARTS patterns and the corresponding atom numbers that define the torsion angles are listed in Table S1. Higher order correlated torsion, *i.e.* three adjacent rotatable bonds, and the atom numbers that define the torsion angles are listed in S2.

Table S1: SMARTS patterns and the atom numbers that define the torsion angles. The atom numbers (1-4) and (5-8) define the first and the second torsion angles respectively. The SMARTS pattern in bold is the pattern defined by Cole et al. [1]

Pattern Number	SMARTS	1	2	3	4	5	6	7	8
1	[a][a]!@;-[CX3](=[CX3])!@;-[a][a]	0	1	2	4	1	2	4	5
2	[a][a]!@;-[NX3H1]!@;-[CX3](=S)[!#1]	0	1	2	3	1	2	3	5
3	[a][c]!@;-[CX4H0]([CX3,N])!@;-[c][a]	0	1	2	4	1	2	4	5
4	[a][c]!@;-[CX4H1]([N,O,H])!@-[c][a]	0	1	2	4	1	2	4	5
5	[a][c]!@;-[CH2]!@;-[n][a]	0	1	2	3	1	2	3	4
6	[a][c]!@;-[CX4H2]!@;-[OX2][C]	0	1	2	3	1	2	3	4
7	[a][c]!@;-[CX4H1]!@;-[OX2][!#1]	0	1	2	3	1	2	3	4
8	[c][c]!@;-[CX4]!@;-[c][c]	0	1	2	3	1	2	3	4
9	[cH0][c]!@;-[CX4H2]!@;-[a][a]	0	1	2	3	1	2	3	4
10	[cH0][c]([cH0])!@;-[NX3]!@;-[a][a]	0	1	3	4	1	3	4	5
11	[cH1][c]([cH1])!@;-[NX3]([CX4])!@;-[a][a]	0	1	3	5	1	3	5	6
12	[!#1][c]!@;-[SX2]!@;-[c][aH1,aH0]	0	1	2	3	1	2	3	4
13	[!#1][NX3H0]!@;-[C](=O)!@;-[O][CH0]	0	1	2	4	1	2	4	5
14	[CX3,CX4][CX4H2]!@;-[C](=O)!@;-[O]~[C]	0	1	2	4	1	2	4	5
15	[N,O,NH1,OH1][CX4]!@;-[C](=O)!@;-[O]~[C]	0	1	2	4	1	2	4	5
16	[C,c][NH]!@;-[C](=S)!@;-[NH][C,c]	0	1	2	4	1	2	4	5
17	[aH1][c]([aH1])!@;-[\$(S(=O)=O)]!@;-[NX3H0][*]	0	1	3	4	1	3	4	5
18	[O]=[C]!@;-[O]!@;-[CX4H0][!#1]	0	1	2	3	1	2	3	4
		Co	ntin	ued	on	nex	t pa	lge	

Table S1: SMARTS patterns and the atom numbers that define the torsion angles. The atom numbers (1-4) and (5-8) define the first and the second torsion angles respectively. The SMARTS pattern in bold is the pattern defined by Cole et al. [1]

Pattern Number	SMARTS	1	2	3	4	5	6	7	8
19	[O]=[C]!@;-[NX3H0](A)!@;-[a][cH0]	0	1	2	4	1	2	4	5

Table S2: Higher order correlated torsion SMARTS pattern and the atom numbers that define the torsion angles. Atoms (1-4), (5-8) and (9-12) defines the first, second and third torsion angles respectively.

SMARTS	1	2	3	4	5	6	7	8	9	10	11	12
[#1][N](c(c)c)!@;-[C](=S)!@;-[NH1]!@;-[C](=O)	0	1	5	7	1	5	7	8	5	7	8	9

Appendices 2: Bivariate von Mises distribution and EM algorithm

Bivariate von Mises distribution and EM algorithm

The (univariate) von Mises distribution (Eq. 1) is a continuous probability distribution on the circle, and it is the circular analogue of the normal distribution. This distribution has been used to model angular data, such as torsion angles and bond angles in molecules [2].

$$f(\theta) = \frac{\exp(\kappa \cos(\theta - \mu))}{2\pi I_0(\kappa)} \tag{1}$$

The parameters μ , κ , $I_0(\kappa)$ are the mean, concentration parameters and the modified Bessel function of order 0 respectively. This distribution is unimodal and symmetrical around the mode (or mean) μ . Large value of κ indicates the high concentration around the mode, while the distribution is reduced to uniform when $\kappa = 0$.

In order to study the correlated torsion, we extend the univariate von Mises distribution and jointly model the correlated conformational angles (θ_1, θ_2) with a bivariate von Mises distribution. Note that there are various (simplified) versions of bivariate von Mises distribution (see [3, 4]), namely Sine model and Cosine model. The Cosine model (Eq. 2 and 3) was used in our implementation.

Cosine density with positive interaction

$$f(\theta_1, \theta_2) = c(\kappa_1, \kappa_2, \kappa_3) \exp\{\kappa_1 \cos(\theta_1 - \mu) + \kappa_2 \cos(\theta_2 - \nu) - \kappa_3 \cos(\theta_1 - \mu - \theta_2 + \nu)\}$$
(2)

Cosine density with negative interaction

$$f(\theta_1, \theta_2) = c(\kappa_1, \kappa_2, \kappa_3) \exp\{\kappa_1 \cos(\theta_1 - \mu) + \kappa_2 \cos(\theta_2 - \nu) - \kappa_3 \cos(\theta_1 - \mu + \theta_2 - \nu)\}$$
(3)

where $c(\kappa_1, \kappa_2, \kappa_3)^{-1}$ is the normalizing constant with the following form:

$$c(\kappa_1,\kappa_2,\kappa_3)^{-1} = (2\pi)^2 \{ I_0(\kappa_1) I_0(\kappa_2) I_0(\kappa_3) + 2\sum_{p=1}^{\infty} I_p(\kappa_1) I_p(\kappa_2) I_p(\kappa_3) \}$$

 $I_r(\cdot)$ denotes the modified Bessels function of the first kind and order r. The parameters (μ, ν) and (κ_1, κ_2) in the model represent the mean, and concentrations respectively. (κ_3) is a parameter controlling the correlation.

The Cosine densities are unimodal if $\kappa_3 < \frac{\kappa_1 \kappa_2}{\kappa_1 + \kappa_2}$ and is bimodal if $\kappa_3 > \frac{\kappa_1 \kappa_2}{\kappa_1 + \kappa_2}$. The random variables (θ_1, θ_2) are approximately bivariate normally distributed if and only if $\kappa_3 < \frac{\kappa_1 \kappa_2}{\kappa_1 + \kappa_2}$. Furthermore, the cosine density is flexible which allows us to consider transformations of all the data when estimating the model parameters. In particular, the cosine density with negative interaction can be obtained by transforming $(\theta_1, \theta_2) \mapsto (\theta_1, -\theta_2)$ in the model of cosine density with positive interaction (see [4]). In practice, we check the likelihood for original data and the transformed data, and select the one with larger value.

Typically, there are multiple modes in the torsional space (see Figure S1) and a single bivariate von Mises distribution is not sufficient to describe the correlated torsion. Therefore, a mixture model (Eq. 4) is commonly used.

$$f_M = \sum_{j=1}^K \pi_j f_j(x, y) \tag{4}$$

where K is the number of components, f_j denotes a cosine density with parameters, and π_j is the weight of each component (with $\sum_i \pi_i = 1$).

We used the Expectation Maximisation (EM)[5] to fit the Eq.4. It is well-known that the EM algorithm can easily get stuck in the local optimal. Hence we performed the EM algorithm multiple times with different initialisation, and chose the best final solution. We also excluded any solutions with extremely high concentration. In the M-step, gradient ascent algorithm was used to update the model parameters.

In this analysis, we considered the correlated torsion in three cases: (i) the conformations that observed in crystal structure, (ii) the lowest energy conformation from Merck Molecular Force Field (MMFF94)[6], and (iii) the lowest energy conformation from semi-empirical method, GFN2[7]. The calculation of the lowest energy conformation, the resulting parameters of the mixture models and the corresponding contour plots are summarised below.

Simulation of the lowest energy conformation

We calculated the lowest energy conformation of the molecules from the COD set, and used it to derive correlated torsion distribution. We only considered molecules with five or fewer rotatable bonds in this calculation. Under this setting, we could find the lowest energy conformation for both GFN2 and MMFF94 with high probability. The sampling schemes are described below.

MMFF94

We simulated diverse conformers by ETKDG[8] followed by energy minimization, and calculated the lowest energy conformation. The implementation in RDKit[9] was used. Note that this is a basin-hopping style optimization [10]. Here we sampled a large set of conformers (see Table S3) for molecules in the COD set.

Table S3:	Number	of simulated	conformations	versus	number	of rotatable	bonds

Rotor Size	Number of conformers
2	50
3	100
4	250
5	500

GFN2

We calculated the lowest energy conformation using the Conformer-Rotamer Ensemble Sampling Tool[11] (CREST) based on GFN-xtb method. iMTD-GC workflow was used in the search. Note that we failed to simulate some of the molecules with CREST due to some computational issues. Hence, we may observe fewer observations than that in MMFF94.

Correlated Torsion Plots

There are nineteen correlated torsion SMARTS patterns. Three plots are given for each SMARTS pattern: torsion preferences in crystal structures, the lowest energy conformation in MMFF94 and GFN2 respectively. All torsion angles are measured in radian. For each figure, the contour plot indicates the log density of a mixture model and the points (in red) mark the mean location for each component. All parameters of each mixture are listed below the plots. μ , ν denote the mean location of the pair of torsion respectively. ω represents the weight of the mixture. κ_1 , κ_2 , are the concentrations. κ_3 is the parameter controlling the correlation respectively.

 $\begin{array}{l} \label{eq:cluster} {\rm Li} \; \omega: \; 0.125\; \mu: -2.24\; \nu: -2.28\; \kappa_1: \; 1.5\; \kappa_2: \; 1.5\; \kappa_3: \; -1.32\\ {\rm Cluster} \; 2:\; \omega: \; 0.125\; \mu: \; -2.22\; \nu: \; 0.8\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; \kappa_3: \; -1.32\\ {\rm Cluster} \; 3:\; \omega: \; 0.125\; \mu: \; -0.92\; \nu: \; 0.79\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster} \; 4:\; \omega: \; 0.125\; \mu: \; -0.93\; \nu: \; .23\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.31\\ {\rm Cluster} \; 5:\; \omega: \; 0.125\; \mu: \; 0.93\; \nu: \; .23\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.31\\ {\rm Cluster} \; 5:\; \omega: \; 0.125\; \mu: \; 0.8\; 7\; \nu: \; -2.7\; \kappa_1: \; 1.5\; \kappa_2: \; 1.5\; \kappa_3: \; -1.31\\ {\rm Cluster} \; 6:\; \omega: \; 0.125\; \mu: \; 0.8\; 9\; \nu: \; 0.8\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.31\\ {\rm Cluster} \; 7:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 0.7\; 6\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.31\\ {\rm Cluster} \; 7:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster} \; 8:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster} \; 8:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster} \; 8:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster} \; 8:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster}\; 3:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster}\; 3:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster}\; 3:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 2.34\; \kappa_1: \; 1.5\; \kappa_2: \; 1.4\; 9\; \kappa_3: \; -1.32\\ {\rm Cluster}\; 3:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 0.3\; \kappa_3: \; -1.32\\ {\rm Cluster}\; 3:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 0.3\; \kappa_3: \; -1.3\; \kappa_3: \; -1.32\\ {\rm Cluster}\; 3:\; \omega: \; 0.125\; \mu: \; 2.16\; \nu: \; 0.3\; \kappa_3: \; -1.3\; \kappa_3:\; -1.3\; \kappa_3$

 $\begin{array}{l} {\rm Cluster}: \omega: 0.115 \; \mu: -1.89 \; \nu: -1.95 \; \kappa_1: 1.52 \; \kappa_2: 1.52 \; \kappa_3: -1.27 \\ {\rm Cluster}: \omega: 0.115 \; \mu: -1.9 \; \nu: 1.11 \; \kappa_1: 1.53 \; \kappa_2: 1.52 \; \kappa_3: -1.27 \\ {\rm Cluster}: \omega: 0.135 \; \mu: -1.16 \; \nu: -1.14 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.29 \\ {\rm Cluster}: \omega: 0.14 \; \mu: -1.17 \; \nu: 1.94 \; \kappa_1: 1.52 \; \kappa_2: 1.51 \; \kappa_3: -1.26 \\ {\rm Cluster}: \omega: 0.11 \; \mu: 1.16 \; \nu: -1.94 \; \kappa_1: 1.52 \; \kappa_2: 1.53 \; \kappa_3: -1.26 \\ {\rm Cluster}: \omega: 0.14 \; \mu: 1.16 \; \nu: -1.14 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.26 \\ {\rm Cluster}: \omega: 0.14 \; \mu: 1.16 \; \nu: -1.14 \; \kappa_1: 1.52 \; \kappa_2: 1.51 \; \kappa_3: -1.26 \\ {\rm Cluster}: \omega: 0.14 \; \mu: 1.9 \; \nu: -1.14 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: \omega: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: \omega: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: \omega: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: \omega: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: \omega: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 1.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.15 \; \mu: 1.9 \; \nu: 1.94 \; \kappa_1: 0.51 \; \kappa_2: 1.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.15 \; \mu: 0.51 \; \mu: 0.51 \; \mu: 0.51 \; \kappa_2: 0.51 \; \kappa_3: -1.3 \\ {\rm Cluster}: 0.51 \; \mu: 0.51 \; \kappa_3: -1.51 \; \kappa_$

 $\begin{array}{l} { { Cluster 1: } \omega : 0.125 \; \mu : -2.39 \; \nu : -2.34 \; \kappa _1 : 1.88 \; \kappa _2 : 1.89 \; \kappa _3 : -1.81 \\ { { Cluster 2: } \omega : 0.125 \; \mu : -2.38 \; \nu : 0.77 \; \kappa _1 : 1.88 \; \kappa _2 : 1.89 \; \kappa _3 : -1.81 \\ { { Cluster 3: } \omega : 0.125 \; \mu : -0.74 \; \nu : -0.8 \; \kappa _1 : 1.88 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 4: } \omega : 0.125 \; \mu : -0.74 \; \nu : 2.31 \; \kappa _1 : 1.88 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 5: } \omega : 0.125 \; \mu : -0.74 \; \nu : 2.34 \; \kappa _1 : 1.88 \; \kappa _2 : 1.83 \; \kappa _3 : -1.81 \\ { { Cluster 5: } \omega : 0.125 \; \mu : 0.73 \; \nu : -2.34 \; \kappa _1 : 1.88 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 6: } \omega : 0.125 \; \mu : 0.73 \; \nu : 0.78 \; \kappa _1 : 1.88 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 7: } \omega : 0.125 \; \mu : 2.38 \; \nu : -0.8 \; \kappa _1 : 1.88 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 6: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.3 \; \kappa _1 : 1.88 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 7: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 6: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 6: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 6: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 6: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \nu : 2.38 \; \kappa _1 : 1.88 \; \kappa _2 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 7: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \nu : 2.38 \; \kappa _1 : 1.88 \; \kappa _2 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \nu : 2.38 \; \kappa _1 : 1.88 \; \kappa _3 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \nu : 2.38 \; \kappa _1 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _1 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _1 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _1 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _1 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.31 \; \kappa _1 : 1.88 \; \kappa _1 : -1.81 \\ { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 2.38 \; \kappa _1 : -1.81 \\ { { { Cluster 8: } \omega : 0.125 \; \mu : 2.38 \; \nu : 0.38 \; \kappa _1 : -1.81 \\ { { { { Cluster 8: } \omega :$

Cluster 1: ω : 0.3 μ : -0.01 ν : -3.14 κ_1 : 0.75 κ_2 : 1.3 κ_3 : 0.03 Cluster 2: ω : 0.3 μ : -0.01 ν : -3.14 κ_1 : 0.75 κ_2 : 1.3 κ_3 : -0.57 Cluster 3: ω : 0.1 μ : -2.01 ν : -0.1 κ_1 : 0.92 κ_2 : 0.9 κ_3 : -0.26 Cluster 4: ω : 0.1 μ : -0.5 ν : 0.1 κ_1 : 0.92 κ_2 : 0.9 κ_3 : -0.26 Cluster 5: ω : 0.1 μ : 1.0 ν : 0 κ_1 : 0.92 κ_2 : 0.9 κ_3 : -0.26

 $\begin{array}{l} { { Cluster 1: } \omega : 0.28 \ \mu : 3.13 \ \nu : 3.1 \ \kappa _1 : 1.14 \ \kappa _2 : 1.36 \ \kappa _3 : -0.82 \\ { { Cluster 2: } \omega : 0.28 \ \mu : -0.03 \ \nu : 3.11 \ \kappa _1 : 1.13 \ \kappa _2 : 1.35 \ \kappa _3 : -0.79 \\ { { Cluster 3: } \omega : 0.11 \ \mu : 2.89 \ \nu : 0.7 \ \kappa _1 : 1.52 \ \kappa _2 : 1.38 \ \kappa _3 : -1.25 \\ { { Cluster 4: } \omega : 0.11 \ \mu : -2.99 \ \nu : -0.62 \ \kappa _1 : 1.52 \ \kappa _2 : 1.4 \ \kappa _3 : -1.24 \\ { { Cluster 5: } \omega : 0.11 \ \mu : -0.22 \ \nu : 0.71 \ \kappa _1 : 1.4 \ \kappa _2 : 1.28 \ \kappa _3 : -1.18 \\ { Cluster 6: } \omega : 0.11 \ \mu : 0.12 \ \nu : -0.63 \ \kappa _1 : 1.41 \ \kappa _2 : 1.29 \ \kappa _3 : -1.18 \\ \end{array}$

Cluster 1: ω : 0.09 μ : -2.9 ν : 0.24 κ_1 : 1.96 κ_2 : 1.96 κ_3 : -1.3 Cluster 2: ω : 0.12 μ : -0.23 ν : -0.21 κ_1 : 1.96 κ_2 : 1.95 κ_3 : -1.35 Cluster 3: ω : 0.11 μ : 0.23 ν : 0.24 κ_1 : 1.96 κ_2 : 1.96 κ_3 : -1.34 Cluster 4: ω : 0.14 μ : 3.0 ν : -0.18 κ_1 : 1.96 κ_2 : 1.96 κ_3 : -1.4 Cluster 5: ω : 0.27 μ : -0.14 ν : -2.91 κ_1 : 1.47 κ_2 : 1.48 κ_3 : -1.3 Cluster 6: ω : 0.27 μ : 3 ν : -2.91 κ_1 : 1.44 κ_2 : 1.45 κ_3 : -1.3

Figure S1: Mixture models for correlated torsion. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components.

 $\begin{array}{l} {\rm Cluster} 1: \; \omega: \; 0.11 \; \mu: -2.31 \; \nu: -2.28 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.51 \\ {\rm Cluster} 2: \; \omega: \; 0.12 \; \mu: -2.4 \; \nu: \; 0.93 \; \kappa_1: \; 1.62 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.52 \\ {\rm Cluster} 3: \; \omega: \; 0.14 \; \mu: -0.92 \; \nu: \; -0.77 \; \kappa_1: \; 1.62 \; \kappa_2: \; 1.61 \; \kappa_3: \; -1.58 \\ {\rm Cluster} 4: \; \omega: \; 0.13 \; \mu: -0.93 \; \nu: \; 2.35 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.62 \; \kappa_3: \; -1.53 \\ {\rm Cluster} 5: \; \omega: \; 0.12 \; \mu: \; 0.87 \; \nu: -2.29 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.62 \; \kappa_3: \; -1.53 \\ {\rm Cluster} 6: \; \omega: \; 0.125 \; \mu: \; 0.8 \; \nu: \; 0.9 \; \kappa_1: \; 1.64 \; \kappa_2: \; 1.62 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 7: \; \omega: \; 0.13 \; \mu: \; 2.27 \; \nu: \; 0.8 \; \kappa_1: \; 1.61 \; \kappa_2: \; 1.62 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.25 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.55 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 2.55 \; \nu: \; 2.33 \; \kappa_1: \; 1.63 \; \kappa_2: \; 1.63 \; \kappa_3: \; -1.54 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 0.55 \; \kappa_2: \; 0.55 \; \kappa_3: \; 0.55 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 0.55 \; \kappa_3: \; 0.55 \; \kappa_3: \; 0.55 \; \kappa_3: \; 0.55 \\ {\rm Cluster} 8: \; \omega: \; 0.125 \; \mu: \; 0.55 \; \kappa_3: \; 0.55 \; \kappa_3:\; 0.55 \; \kappa_3:\; 0.55 \; \kappa$

Cluster 1: ω : 0.16 μ : -2.4 ν : -2.2 κ_1 : 1.63 κ_2 : 1.65 κ_3 : -1.45 Cluster 2: ω : 0.16 μ : -2.41 ν : 0.94 κ_1 : 1.65 κ_2 : 1.66 κ_3 : -1.46 Cluster 3: ω : 0.09 μ : -0.96 ν : -0.85 κ_1 : 1.74 κ_2 : 1.73 κ_3 : -1.28 Cluster 4: ω : 0.09 μ : -0.95 ν : 2.3 κ_1 : 1.74 κ_2 : 1.73 κ_3 : -1.28 Cluster 5: ω : 0.16 μ : 0.77 ν : -2.2 κ_1 : 1.66 κ_2 : 1.65 κ_3 : -1.46 Cluster 6: ω : 0.16 μ : 0.78 ν : 0.95 κ_1 : 1.65 κ_2 : 1.67 κ_3 : -1.47 Cluster 7: ω : 0.09 μ : 2.24 ν : -0.86 κ_1 : 1.73 κ_2 : 1.74 κ_3 : -1.27 $\begin{array}{l} { { Cluster 1: } \omega : 0.12 \ \mu : -2.42 \ \nu : -2.41 \ \kappa _1 : 1.68 \ \kappa _2 : 1.68 \ \kappa _3 : -1.41 \\ { { Cluster 2: } \omega : 0.12 \ \mu : -2.49 \ \nu : 0.91 \ \kappa _1 : 1.68 \ \kappa _2 : 1.67 \ \kappa _3 : -1.42 \\ { { Cluster 3: } \omega : 0.135 \ \mu : -0.88 \ \nu : -0.76 \ \kappa _1 : 1.67 \ \kappa _2 : 1.66 \ \kappa _3 : -1.44 \\ { { Cluster 4: } \omega : 0.125 \ \mu : -0.87 \ \nu : 2.43 \ \kappa _1 : 1.69 \ \kappa _2 : 1.67 \ \kappa _3 : -1.43 \\ { { Cluster 5: } \omega : 0.125 \ \mu : 0.82 \ \nu : -2.42 \ \kappa _1 : 1.67 \ \kappa _2 : 1.67 \ \kappa _3 : -1.43 \\ { { Cluster 5: } \omega : 0.125 \ \mu : 0.82 \ \nu : -2.42 \ \kappa _1 : 1.67 \ \kappa _2 : 1.67 \ \kappa _3 : -1.43 \\ { { Cluster 5: } \omega : 0.125 \ \mu : 0.75 \ \nu : 0.893 \ \kappa _1 : 1.66 \ \kappa _2 : 1.67 \ \kappa _3 : -1.43 \\ { { Cluster 7: } \omega : 0.125 \ \mu : 2.37 \ \nu : -0.79 \ \kappa _1 : 1.67 \ \kappa _2 : 1.67 \ \kappa _3 : -1.43 \\ { { Cluster 7: } \omega : 0.12 \ \mu : 2.39 \ \nu : 2.41 \ \kappa _1 : 1.69 \ \kappa _2 : 1.67 \ \kappa _3 : -1.41 \\ } \end{array}$

Cluster 1: ω : 0.125 μ : -1.88 ν : -2.06 κ_1 : 1.66 κ_2 : 1.64 κ_3 : -1.43 Cluster 2: ω : 0.12 μ : -1.91 ν : 1.1 κ_1 : 1.67 κ_2 : 1.66 κ_3 : -1.43 Cluster 3: ω : 0.13 μ : -1.2 ν : 1.91 κ_1 : 1.67 κ_2 : 1.66 κ_3 : -1.44 Cluster 4: ω : 0.125 μ : -1.23 ν : -1.23 κ_1 : 1.67 κ_2 : 1.65 κ_3 : -1.45 Cluster 5: ω : 0.125 μ : 1.28 ν : -2.08 κ_1 : 1.68 κ_2 : 1.65 κ_3 : -1.44 Cluster 6: ω : 0.125 μ : 1.27 ν : 1.01 κ_1 : 1.69 κ_2 : 1.67 κ_3 : -1.44 Cluster 7: ω : 0.12 μ : 1.88 ν : -1.11 κ_1 : 1.69 κ_2 : 1.68 κ_3 : -1.44

 $\begin{array}{l} \label{eq:constraints} \text{Cluster 1: } \omega: 0.14 \ \mu: -1.78 \ \nu: -2.02 \ \kappa_1: 1.86 \ \kappa_2: 1.85 \ \kappa_3: -1.71 \\ \text{Cluster 2: } \omega: 0.14 \ \mu: -1.8 \ \nu: 1.14 \ \kappa_1: 1.86 \ \kappa_2: 1.86 \ \kappa_3: -1.71 \\ \text{Cluster 3: } \omega: 0.11 \ \mu: -1.28 \ \nu: 1.98 \ \kappa_1: 1.89 \ \kappa_2: 1.87 \ \kappa_3: -1.68 \\ \text{Cluster 4: } \omega: 0.11 \ \mu: -1.3 \ \nu: -1.1 \ \kappa_1: 1.9 \ \kappa_2: 1.86 \ \kappa_3: -1.72 \\ \text{Cluster 5: } \omega: 0.14 \ \mu: 1.36 \ \nu: -2.02 \ \kappa_1: 1.87 \ \kappa_2: 1.86 \ \kappa_3: -1.71 \\ \text{Cluster 5: } \omega: 0.14 \ \mu: 1.34 \ \nu: 1.1 \ \kappa_1: 1.88 \ \kappa_2: 1.87 \ \kappa_3: -1.71 \\ \text{Cluster 7: } \omega: 0.11 \ \mu: 1.34 \ \nu: -1.1 \ \kappa_1: 1.9 \ \kappa_2: 1.88 \ \kappa_3: -1.71 \\ \text{Cluster 7: } \omega: 0.11 \ \mu: 1.84 \ \nu: -1.71 \ \kappa_1: 1.9 \ \kappa_2: 1.88 \ \kappa_3: -1.68 \\ \text{Cluster 7: } \omega: 0.12 \ \mu: 1.84 \ \nu: 1.97 \ \kappa_1: 1.88 \ \kappa_2: 1.87 \ \kappa_3: -1.69 \\ \end{array}$

 $\begin{array}{l} { { Cluster 1: } \omega: 0.125 \ \mu: -2.01 \ v: -2.01 \ \kappa_1: 1.67 \ \kappa_2: 1.67 \ \kappa_3: -1.42 \\ { { Cluster 2: } \omega: 0.125 \ \mu: -2.04 \ v: 1.1 \ \kappa_1: 1.67 \ \kappa_2: 1.68 \ \kappa_3: -1.42 \\ { { Cluster 3: } \omega: 0.125 \ \mu: -1.1 \ v: 1.97 \ \kappa_1: 1.69 \ \kappa_2: 1.68 \ \kappa_3: -1.43 \\ { { Cluster 4: } \omega: 0.125 \ \mu: -1.14 \ v: -1.06 \ \kappa_1: 1.69 \ \kappa_2: 1.67 \ \kappa_3: -1.43 \\ { { Cluster 5: } \omega: 0.125 \ \mu: -1.15 \ v: -2.08 \ \kappa_1: 1.68 \ \kappa_2: 1.67 \ \kappa_3: -1.42 \\ { { Cluster 6: } \omega: 0.125 \ \mu: -1.15 \ v: -0.05 \ \kappa_1: 1.69 \ \kappa_2: 1.67 \ \kappa_3: -1.42 \\ { { Cluster 7: } \omega: 0.125 \ \mu: 1.15 \ v: -0.05 \ \kappa_1: 1.69 \ \kappa_2: 1.68 \ \kappa_3: -1.42 \\ { Cluster 6: } \omega: 0.125 \ \mu: 1.97 \ v: -1.05 \ \kappa_1: 1.68 \ \kappa_2: -1.68 \ \kappa_3: -1.41 \\ { Cluster 8: } \omega: 0.125 \ \mu: 1.99 \ v: 1.97 \ \kappa_1: 1.68 \ \kappa_2: -1.68 \ \kappa_3: -1.41 \\ \end{array}$

Figure S1: Mixture models for correlated torsions. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components. (Continued)

 $\begin{array}{l} {\rm Cluster}: \omega: 0.13 \; \mu: -2.2 \; \nu: -1.81 \; \kappa_1: 1.66 \; \kappa_2: 1.64 \; \kappa_3: -1.11 \\ {\rm Cluster}: \omega: 0.12 \; \mu: -2.19 \; \nu: 1.26 \; \kappa_1: 1.67 \; \kappa_2: 1.66 \; \kappa_3: -1.11 \\ {\rm Cluster}: \omega: 0.12 \; \mu: -1.03 \; \nu: -1.25 \; \kappa_1: 1.67 \; \kappa_2: 1.66 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: -1.02 \; \nu: 1.83 \; \kappa_1: 1.67 \; \kappa_2: 1.65 \; \kappa_3: -1.08 \\ {\rm Cluster}: \omega: 0.15 \; \mu: 0.93 \; \nu: -1.81 \; \kappa_1: 1.68 \; \kappa_2: 1.65 \; \kappa_3: -1.08 \\ {\rm Cluster}: \omega: 0.12 \; \mu: 0.84 \; \nu: 1.25 \; \kappa_1: 1.68 \; \kappa_2: 1.67 \; \kappa_3: -1.05 \\ {\rm Cluster}: \omega: 0.12 \; \mu: 0.84 \; \nu: 1.25 \; \kappa_1: 1.69 \; \kappa_2: 1.67 \; \kappa_3: -1.05 \\ {\rm Cluster}: \omega: 0.12 \; \mu: 2.1 \; \nu: -1.25 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.06 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.67 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.68 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.69 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.69 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.69 \; \kappa_3: -1.07 \\ {\rm Cluster}: {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_2: 1.69 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_3: -1.07 \\ {\rm Cluster}: \omega: 0.13 \; \mu: 2.11 \; \nu: 1.83 \; \kappa_1: 1.69 \; \kappa_3: -1.07 \\ {\rm Cluster}: {\rm Cluster}: 0.013 \; \mu: 2.11 \; \kappa_3: -1.07 \\ {\rm Cluster}: 0.013 \; \mu: 2.11 \; \kappa_3: -1.07 \\ {\rm Cluster}: 0.013 \; \mu: 2.11 \; \kappa_3: -1.07 \\ {\rm Cluster}: 0.013 \; \mu: 2.11 \; \kappa_3: -1.07 \\ {\rm Cluster}: 0.013 \; \mu: 2.11 \; \kappa_3: -1.07 \\ {\rm Cluster}: 0.013 \; \mu: 2.11 \; \kappa_3: -1.07 \\ {\rm Clu$

Cluster 1: $\omega: 0.06 \ \mu: -2.01 \ \nu: 1.28 \ \kappa_1: 1.78 \ \kappa_2: 1.77 \ \kappa_3: -1.08$ Cluster 2: $\omega: 0.05 \ \mu: -1 \ \nu: -1.27 \ \kappa_1: 1.78 \ \kappa_2: 1.77 \ \kappa_3: -1.06$ Cluster 3: $\omega: 0.06 \ \mu: 1.02 \ \nu: -1.28 \ \kappa_1: 1.78 \ \kappa_2: 1.77 \ \kappa_3: -1.06$ Cluster 4: $\omega: 0.05 \ \mu: 2.02 \ \nu: -1.28 \ \kappa_1: 1.78 \ \kappa_2: 1.77 \ \kappa_3: -1.06$ Cluster 5: $\omega: 0.39 \ \mu: -1.5 \ \nu: 3.13 \ \kappa_1: 1.02 \ \kappa_2: 1.71 \ \kappa_3: -0.49$

Cluster 1: ω : 0.145 μ : -2.07 ν : 1.52 κ_1 : 1.74 κ_2 : 1.7 κ_3 : -1.37 Cluster 2: ω : 0.155 μ : -1.02 ν : -1.53 κ_1 : 1.74 κ_2 : 1.7 κ_3 : -1.37 Cluster 3: ω : 0.145 μ : 1.04 ν : 1.5 κ_1 : 1.74 κ_2 : 1.71 κ_3 : -1.37 Cluster 4: ω : 0.155 μ : 2.08 ν : -1.56 κ_1 : 1.73 κ_2 : 1.78 κ_3 : -1.37 Cluster 5: ω : 0.2 μ : -1.48 ν : -3.14 κ_1 : 1.0 κ_2 : 1.45 κ_3 : -0.74 Cluster 6: ω : 0.2 μ : 1.6 ν : -3.14 κ_1 : 0.99 κ_2 : 1.45 κ_3 : -0.74

 $\begin{array}{l} \text{Cluster 1: } \omega: 0.265 \ \mu: -2.09 \ \nu: 1.38 \ \kappa_1: 1.67 \ \kappa_2: 1.71 \ \kappa_3: -1.58 \\ \text{Cluster 2: } \omega: 0.235 \ \mu: -1.02 \ \nu: -1.38 \ \kappa_1: 1.7 \ \kappa_2: 1.73 \ \kappa_3: -1.56 \\ \text{Cluster 3: } \omega: 0.265 \ \mu: 1.02 \ \nu: 1.37 \ \kappa_1: 1.68 \ \kappa_2: 1.71 \ \kappa_3: -1.59 \\ \text{Cluster 4: } \omega: 0.235 \ \mu: 2.09 \ \nu: -1.39 \ \kappa_1: 1.7 \ \kappa_2: 1.73 \ \kappa_3: -1.58 \\ \end{array}$

Figure S1: Mixture models for correlated torsions. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components.(Continued)

 $\begin{array}{l} { { Cluster 1: } \omega: 0.135 \ \mu: 3.04 \ \nu: 2.96 \ \kappa_1: 1.05 \ \kappa_2: 1.3 \ \kappa_3: -0.92 \\ { { Cluster 2: } \omega: 0.135 \ \mu: -0.08 \ \nu: 2.96 \ \kappa_1: 1.04 \ \kappa_2: 1.28 \ \kappa_3: -0.92 \\ { { Cluster 3: } \omega: 0.145 \ \mu: -2.27 \ \nu: 1.19 \ \kappa_1: 1.92 \ \kappa_2: 1.89 \ \kappa_3: -1.43 \\ { { Cluster 4: } \omega: 0.22 \ \mu: -0.78 \ \nu: -1.29 \ \kappa_1: 1.87 \ \kappa_2: 1.84 \ \kappa_3: -1.61 \\ { { Cluster 5: } \omega: 0.15 \ \mu: 0.87 \ \nu: 1.19 \ \kappa_1: 1.92 \ \kappa_2: 1.89 \ \kappa_3: -1.43 \\ { { Cluster 6: } \omega: 0.215 \ \mu: 2.37 \ \nu: -1.29 \ \kappa_1: 1.86 \ \kappa_2: 1.84 \ \kappa_3: -1.6 \\ \end{array} } } \end{array}$

 $\begin{array}{l} { { Cluster 1: } \omega : 0.21 \ \mu : 3.02 \ \nu : -3.02 \ \kappa _1 : 1.48 \ \kappa _2 : 1.55 \ \kappa _3 : -1.43 \\ { { Cluster 2: } \omega : 0.21 \ \mu : -0.14 \ \nu : -3.02 \ \kappa _1 : 1.47 \ \kappa _2 : 1.54 \ \kappa _3 : -1.43 \\ { { Cluster 3: } \omega : 0.125 \ \mu : -2.27 \ \nu : 1.14 \ \kappa _1 : 1.91 \ \kappa _2 : 1.94 \ \kappa _3 : -1.5 \\ { { Cluster 4: } \omega : 0.165 \ \mu : -0.83 \ \nu : -1.2 \ \kappa _1 : 1.94 \ \kappa _2 : 1.92 \ \kappa _3 : -1.64 \\ { { Cluster 5: } \omega : 0.125 \ \mu : 0.66 \ \nu : 1.15 \ \kappa _1 : 1.92 \ \kappa _2 : 1.92 \ \kappa _3 : -1.5 \\ { { Cluster 5: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.15 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 5: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.15 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.15 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : 1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : 2.31 \ \nu : -1.18 \ \kappa _1 : 1.89 \ \kappa _2 : -1.89 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : -1.80 \ \kappa _3 : -1.64 \\ { { Cluster 6: } \omega : 0.165 \ \mu : -1.80 \ \kappa _3 : -1.80 \$

 $\begin{array}{l} \label{eq:constraint} \text{Cluster 1: } \omega: 0.135 \ \mu: -2.2 \ \nu: -2.04 \ \kappa_1: 1.39 \ \kappa_2: 1.41 \ \kappa_3: -1.11 \\ \text{Cluster 2: } \omega: 0.13 \ \mu: -2.19 \ \nu: 1.04 \ \kappa_1: 1.42 \ \kappa_2: 1.43 \ \kappa_3: -1.11 \\ \text{Cluster 3: } \omega: 0.115 \ \mu: -1.05 \ \nu: -1.05 \ \kappa_1: 1.44 \ \kappa_2: 1.44 \ \kappa_3: -1.07 \\ \text{Cluster 4: } \omega: 0.12 \ \mu: -1.04 \ \nu: 2.03 \ \kappa_1: 1.43 \ \kappa_2: 1.42 \ \kappa_3: -1.08 \\ \text{Cluster 5: } \omega: 0.14 \ \mu: 0.96 \ \nu: -2.03 \ \kappa_1: 1.44 \ \kappa_2: 1.41 \ \kappa_3: -1.12 \\ \text{Cluster 6: } \omega: 0.155 \ \mu: 0.98 \ \nu: 1.05 \ \kappa_1: 1.42 \ \kappa_2: 1.43 \ \kappa_3: -1.12 \\ \text{Cluster 7: } \omega: 0.11 \ \mu: 2.1 \ \nu: -1.05 \ \kappa_1: 1.44 \ \kappa_2: 1.43 \ \kappa_3: -1.06 \\ \text{Cluster 7: } \omega: 0.15 \ \mu: 2.11 \ \nu: 2.11 \ \kappa_1: 1.42 \ \kappa_2: 1.42 \ \kappa_3: -1.06 \\ \end{array}$

Figure S1: Mixture models for correlated torsion. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components. (Continued)

 $\begin{array}{l} \label{eq:constraints} Cluster 1: ω: 0.15 μ: -2.05 ν: -1.77 κ_1: 1.59 κ_2: 1.61 κ_3: -1.38 \\ \label{eq:constraints} Cluster 2: ω: 0.15 μ: -2.03 ν: 1.35 κ_1: 1.62 κ_2: 1.63 κ_3: -1.38 \\ \label{eq:constraints} Cluster 3: ω: 0.11 μ: -1.36 ν: -0.83 κ_1: 1.71 κ_2: 1.68 κ_3: -1.37 \\ \label{eq:constraints} Cluster 4: ω: 0.11 μ: -1.36 ν: 2.28 κ_1: 1.71 κ_2: 1.68 κ_3: -1.38 \\ \label{eq:constraints} Cluster 5: ω: 0.12 μ: 1.39 ν: -2.22 κ_1: 1.7 κ_2: 1.66 κ_3: -1.39 \\ \label{eq:constraints} Cluster 5: ω: 0.12 μ: 1.40 ν: 0.94 κ_1: 1.7 κ_2: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 7: ω: 0.12 μ: 1.98 ν: -1.14 κ_1: 1.65 κ_2: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 1.99 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 1.99 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 1.99 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 1.99 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 1.99 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 1.99 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 2.19 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 2.19 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 2.19 κ_1: 1.65 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 μ: 2.01 ν: 0.19 κ_1: 0.15 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 κ_1: 2.01 ν: 0.19 κ_1: 0.15 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 κ_1: 2.01 ν: 0.19 κ_1: 0.15 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 κ_1: 0.15 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 κ_1: 0.15 κ_3: -1.35 \\ \label{eq:constraints} Cluster 8: ω: 0.12 κ_1: 0.15 κ_3: -1.35 \\ \l$

Cluster 1: ω : 0.27 μ : -1.61 ν : -0.01 κ_1 : 3.45 κ_2 : 3.8 κ_3 : -3.2 Cluster 2: ω : 0.27 μ : -1.61 ν : 3.11 κ_1 : 3.45 κ_2 : 3.79 κ_3 : -3.21 Cluster 3: ω : 0.23 μ : 1.69 ν : -0.05 κ_1 : 3.44 κ_2 : 3.81 κ_3 : -3.18 Cluster 4: ω : 0.23 μ : 1.72 ν : 3.05 κ_1 : 3.44 κ_2 : 3.82 κ_3 : -3.18

Cluster 1: ω : 0.26 μ : -1.65 ν : -0.08 κ_1 : 3.46 κ_2 : 3.86 κ_3 : -3.12 Cluster 2: ω : 0.26 μ : -1.66 ν : 3.08 κ_1 : 3.46 κ_2 : 3.86 κ_3 : -3.13 Cluster 3: ω : 0.24 μ : 1.48 ν : 0.04 κ_1 : 3.47 κ_2 : 3.88 κ_3 : -3.12 Cluster 4: ω : 0.24 μ : 1.51 ν : -3.12 κ_1 : 3.46 κ_2 : 3.88 κ_3 : -3.12

Cluster 1: ω : 0.27 μ : -1.51 ν : -0.04 κ_1 : 3.25 κ_2 : 3.88 κ_3 : -3.04 Cluster 2: ω : 0.27 μ : -1.64 ν : 3.13 κ_1 : 3.25 κ_2 : 3.88 κ_3 : -3.04 Cluster 3: ω : 0.23 μ : 1.59 ν : 0.01 κ_1 : 3.26 κ_2 : 3.91 κ_3 : -3.04 Cluster 4: ω : 0.23 μ : 1.69 ν : 3.13 κ_1 : 3.26 κ_2 : 3.9 κ_3 : -3.04

Figure S1: Mixture models for correlated torsion. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components. (Continued)

Cluster 1: ω : 0.05 μ : -2.47 ν : -2.37 κ_1 : 1.42 κ_2 : 1.4 κ_3 : -0.8 Cluster 2: ω: 0.06 μ: -2.51 ν: 0.76 κ₁: 1.41 κ₂: 1.4 κ₃: -0.84 Cluster 3: ω : 0.12 μ : -0.78 ν : -0.63 κ_1 : 1.34 κ_2 : 1.34 κ_3 : -1.02 Cluster 4: ω : 0.12 μ : -0.78 ν : 2.2 κ_1 : 1.34 κ_2 : 1.34 κ_3 : -1.03 Cluster 5: ω : 0.17 μ : 0.7 ν : -2.45 κ_1 : 1.27 κ_2 : 1.28 κ_3 : -1.14 Cluster 6: ω: 0.18 μ: 0.75 ν: 0.6 κ₁: 1.27 κ₂: 1.27 κ₃: -1.15 Cluster 7: ω : 0.15 μ : 2.47 ν : -0.69 κ_1 : 1.33 κ_2 : 1.33 κ_3 : -1.1 Cluster 8: ω: 0.15 μ: 2.36 ν: 2.54 κ₁: 1.32 κ₂: 1.32 κ₃: -1.1

Cluster 1: ω: 0.21 μ: -2.55 ν: -2.28 κ₁: 2.96 κ₂: 2.97 κ₃: -2.56 Cluster 2: ω : 0.23 μ : -2.58 ν : 0.86 κ_1 : 2.97 κ_2 : 2.97 κ_3 : -2.56 Cluster 3: ω: 0.14 μ: -0.61 ν: -0.92 κ₁: 2.98 κ₂: 2.97 κ₃: -2.42 Cluster 4: ω : 0.14 μ : -0.63 v: 2.24 κ_1 : 2.94 κ_2 : 2.93 κ_3 : -2.42 Cluster 5: ω: 0.1 μ: 0.67 ν: -2.5 κ₁: 2.98 κ₂: 2.97 κ₃: -2.26 Cluster 6: ω : 0.1 μ : 0.67 v: 0.65 κ_1 : 2.93 κ_2 : 2.93 κ_3 : -2.26 Cluster 7: ω: 0.05 μ: 2.6 ν: -0.79 κ₁: 2.91 κ₂: 2.91 κ₃: -2.1 Cluster 8: ω : 0.03 μ : 2.45 ν : 2.97 κ_1 : 2.91 κ_2 : 2.91 κ_3 : -2.1

Cluster 1: ω: 0.16 μ: -2.65 ν: -2.47 κ₁: 2.82 κ₂: 2.8 κ₃: -2.72 Cluster 2: ω : 0.16 μ : -2.65 ν : 0.7 κ_1 : 2.82 κ_2 : 2.8 κ_3 : -2.72 Cluster 3: ω: 0.12 μ: -0.71 ν: -0.49 κ₁: 2.92 κ₂: 2.92 κ₃: -2.81 Cluster 4: ω : 0.12 μ : -0.71 ν : 2.68 κ_1 : 2.94 κ_2 : 2.92 κ_3 : -2.81 Cluster 5: ω : 0.12 μ : 0.74 ν : -2.69 κ_1 : 2.82 κ_2 : 2.8 κ_3 : -2.72 Cluster 6: ω : 0.12 μ : 0.74 ν : 0.49 κ_1 : 2.91 κ_2 : 2.91 κ_3 : -2.79 Cluster 7: ω : 0.1 μ : 2.58 ν : -0.59 κ_1 : 2.91 κ_2 : 2.91 κ_3 : -2.67 Cluster 8: ω: 0.1 μ: 2.59 ν: 2.6 κ₁: 2.91 κ₂: 2.91 κ₃: -2.66

Cluster 2: ω: 0.1 μ: -2.68 ν: 1.37 κ₁: 1.32 κ₂: 1.32 κ₃: -0.95 Cluster 3: ω : 0.09 μ : -1.23 ν : -0.13 κ_1 : 1.35 κ_2 : 1.35 κ_3 : -0.9 Cluster 4: ω : 0.05 μ : -1 ν : 2.41 κ_1 : 1.36 κ_2 : 1.37 κ_3 : -0.86 Cluster 5: ω : 0.18 μ : 0.16 ν : -1.8 κ_1 : 1.22 κ_2 : 1.23 κ_3 : -1.1 Cluster 6: ω : 0.16 μ : -0.08 ν : 1.76 κ_1 : 1.28 κ_2 : 1.28 κ_3 : -1.06 Cluster 7: ω: 0.12 μ: 1.98 ν: -0.44 κ₁: 1.27 κ₂: 1.26 κ₃: -1.06 Cluster 8: ω : 0.14 μ : 2.35 v: 2.3 κ_1 : 1.23 κ_2 : 1.23 κ_3 : -1.06

 $\mathsf{Cluster 1:} \ \omega: \ 0.16 \ \mu: \ -2.71 \ \nu: \ -1.98 \ \kappa_1: \ 1.23 \ \kappa_2: \ 1.23 \ \kappa_3: \ -1.09 \quad \mathsf{Cluster 1:} \ \omega: \ 0.12 \ \mu: \ -1.97 \ \nu: \ -2.06 \ \kappa_1: \ 1.34 \ \kappa_2: \ 1.31 \ \kappa_3: \ -1.08 \ \kappa_3:$ Cluster 2: ω : 0.12 μ : -1.97 ν : 1.06 κ_1 : 1.36 κ_2 : 1.33 κ_3 : -1.08 Cluster 3: ω : 0.13 μ : -1.25 ν : -1.06 κ_1 : 1.36 κ_2 : 1.33 κ_3 : -1.08 Cluster 4: ω: 0.13 μ: -1.25 ν: 2.08 κ₁: 1.37 κ₂: 1.31 κ₃: -1.08 Cluster 5: ω: 0.12 μ: 1.14 ν: -2.05 κ₁: 1.34 κ₂: 1.32 κ₃: -1.07 Cluster 6: ω : 0.12 μ : 1.14 ν : 1.08 κ_1 : 1.36 κ_2 : 1.34 κ_3 : -1.06 Cluster 7: ω : 0.13 μ : 1.89 ν : -1.06 κ_1 : 1.35 κ_2 : 1.32 κ_3 : -1.08 Cluster 8: ω: 0.13 μ: 1.89 ν: 2.096 κ₁: 1.33 κ₂: 1.3 κ₃: -1.09

Cluster 1: ω : 0.125 μ : -2.49 ν : -2.43 κ_1 : 1.63 κ_2 : 1.64 κ_3 : -1.44 Cluster 2: ω : 0.11 μ : -2.4 ν : 0.64 κ_1 : 1.66 κ_2 : 1.66 κ_3 : -1.43 Cluster 3: ω : 0.12 μ : -0.8 ν : -0.57 κ_1 : 1.64 κ_2 : 1.66 κ_3 : -1.46 Cluster 4: ω: 0.125 μ: -0.66 ν: 2.41 κ₁: 1.64 κ₂: 1.65 κ₃: -1.47 Cluster 5: ω : 0.13 μ : 0.58 ν : -2.36 κ_1 : 1.64 κ_2 : 1.63 κ_3 : -1.48 Cluster 6: ω: 0.12 μ: 0.65 ν: 0.72 κ₁: 1.66 κ₂: 1.66 κ₃: -1.48 Cluster 7: ω : 0.13 μ : 2.48 ν : -0.64 κ_1 : 1.65 κ_2 : 1.65 κ_3 : -1.48 Cluster 8: ω: 0.14 μ: 2.6 ν: 2.35 κ₁: 1.64 κ₂: 1.62 κ₃: -1.49

Figure S1: Mixture models for correlated torsions. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components.(Continued)

 L
 Cluster 1: ω : 0.5 μ : -0.01 ν : 3.14 κ_1 : 4.42 κ_2 : 5.46 κ_3 : -4.18
 O

 .15
 Cluster 2: ω : 0.5 μ : 3.134 ν : 3.14 κ_1 : 4.44 κ_2 : 5.48 κ_3 : -4.18
 O

 $\begin{array}{l} \mbox{Cluster 1: } \omega: \ 0.5 \ \mu: \ -0.02 \ \nu: \ -3.14 \ \kappa_1: \ 3.95 \ \kappa_2: \ 5.62 \ \kappa_3: \ -3.74 \\ \mbox{Cluster 2: } \omega: \ 0.5 \ \mu: \ 3.14 \ \nu: \ -3.14 \ \kappa_1: \ 3.95 \ \kappa_2: \ 5.62 \ \kappa_3: \ -3.74 \end{array}$

Figure S1: Mixture models for correlated torsion. The contour plot indicates the log density of a mixture model and the points (in red) mark the mean location for the components.(Continued)

 $\begin{array}{c} \mbox{Cluster 1: } \omega: 0.3 \; \mu: \; 0.01 \; \nu: \; -3.14 \; \kappa_1: \; 2.33 \; \kappa_2: \; 7.81 \; \kappa_3: \; -0.94 \\ \mbox{Cluster 2: } \omega: \; 0.7 \; \mu: \; 3.11 \; \nu: \; -3.14 \; \kappa_1: \; 2.31 \; \kappa_2: \; 6.67 \; \kappa_3: \; -2.28 \end{array} \quad \begin{array}{c} \mbox{Cluster 2: } \omega: 0.7 \; \mu: \; 3.11 \; \nu: \; -3.14 \; \kappa_1: \; 2.31 \; \kappa_2: \; 6.67 \; \kappa_3: \; -2.28 \end{array}$

Cluster 1: ω: 0.43 μ: 0.0 ν: -3.14 κ₁: 2.74 κ₂: 7.3 κ₃: -2.15 Cluster 2: ω: 0.57 μ: 3.04 ν: -3.14 κ₁: 2.8 κ₂: 6.07 κ₃: -2.45

 $\begin{array}{l} \mbox{Cluster 1: } \omega: \ 0.46 \ \mu: \ 0.03 \ \nu: \ -3.14 \ \kappa_1: \ 2.13 \ \kappa_2: \ 7.04 \ \kappa_3: \ -1.83 \\ \mbox{Cluster 2: } \omega: \ 0.54 \ \mu: \ 3.04 \ \nu: \ -3.14 \ \kappa_1: \ 2.2 \ \kappa_2: \ 6.17 \ \kappa_3: \ -2.16 \end{array}$

Figure S1: Mixture models for correlated torsion. The contour plot indicates the log density of a mixture model and the points (in red) mark the mean location for the components.(Continued)

 $\begin{array}{l} { { Cluster 1: } \omega : 0.25 \ \mu : -1.56 \ \nu : -1.37 \ \kappa _1 : 1.91 \ \kappa _2 : 1.89 \ \kappa _3 : -1.83 \\ { { Cluster 2: } \omega : 0.25 \ \mu : -1.57 \ \nu : 1.09 \ \kappa _1 : 1.91 \ \kappa _2 : 1.89 \ \kappa _3 : -1.88 \\ { { Cluster 3: } \omega : 0.25 \ \mu : 1.58 \ \nu : -1.35 \ \kappa _1 : 1.9 \ \kappa _2 : 1.88 \ \kappa _3 : -1.84 \\ { { Cluster 4: } \omega : 0.25 \ \mu : 1.57 \ \nu : 1.34 \ \kappa _1 : 1.91 \ \kappa _2 : 1.87 \ \kappa _3 : -1.84 \\ \end{array} }$

 $\begin{array}{l} \mbox{Cluster 1: } \omega: 0.08 \ \mu: -1.71 \ \nu: -3.1 \ \kappa_1: 1.91 \ \kappa_2: 1.91 \ \kappa_3: -1.23 \\ \mbox{Cluster 2: } \omega: 0.21 \ \mu: -1.54 \ \nu: -1.23 \ \kappa_1: 1.91 \ \kappa_2: 1.86 \ \kappa_3: -1.85 \\ \mbox{Cluster 3: } \omega: 0.21 \ \mu: -1.65 \ \nu: 1.36 \ \kappa_1: 1.91 \ \kappa_2: 1.85 \ \kappa_3: -1.86 \\ \mbox{Cluster 4: } \omega: 0.07 \ \mu: 1.35 \ \nu: -3.1 \ \kappa_1: 1.91 \ \kappa_2: 1.91 \ \kappa_3: -1.08 \\ \mbox{Cluster 5: } \omega: 0.21 \ \mu: -1.64 \ \nu: -1.38 \ \kappa_1: 1.92 \ \kappa_2: 1.86 \ \kappa_3: -1.83 \\ \mbox{Cluster 5: } \omega: 0.22 \ \mu: 1.54 \ \nu: 1.4 \ \kappa_1: 1.9 \ \kappa_2: 1.84 \ \kappa_3: -1.82 \\ \end{array}$

 $\begin{array}{l} { { Cluster 1: } \omega : 0.25 \ \mu : -1.47 \ \nu : -1.48 \ \kappa _1 : 1.25 \ \kappa _2 : 1.13 \ \kappa _3 : -1.14 \\ { { Cluster 2: } \omega : 0.25 \ \mu : -1.59 \ \nu : 1.45 \ \kappa _1 : 1.26 \ \kappa _2 : 1.14 \ \kappa _3 : -1.12 \\ { { Cluster 3: } \omega : 0.25 \ \mu : 1.63 \ \nu : -1.46 \ \kappa _1 : 1.28 \ \kappa _2 : 1.14 \ \kappa _3 : -1.15 \\ { { Cluster 4: } \omega : 0.25 \ \mu : 1.51 \ \nu : 1.49 \ \kappa _1 : 1.27 \ \kappa _2 : 1.14 \ \kappa _3 : -1.15 \\ \end{array} }$

Figure S1: Mixture models for correlated torsions. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components. (Continued)

Cluster 1: ω : 0.38 μ : -3.1 ν : -1.64 κ_1 : 1.4 κ_2 : 1.38 κ_3 : -1.33 Cluster 2: ω: 0.34 μ: 3.13 ν: 1.66 κ₁: 1.44 κ₂: 1.42 κ₃: -1.31

Cluster 1: ω : 0.29 μ : 3.06 ν : -1.52 κ_1 : 1.31 κ_2 : 1.25 κ_3 : -1.17 Cluster 2: ω: 0.31 μ: 2.91 ν: 1.94 κ₁: 1.32 κ₂: 1.27 κ₃: -1.19 $\mathsf{Cluster 3:} \; \omega: \; 0.14 \; \mu: \; 0.02 \; \nu: \; -1.49 \; \kappa_1: \; 1.47 \; \kappa_2: \; 1.46 \; \kappa_3: \; -0.99 \quad \mathsf{Cluster 3:} \; \omega: \; 0.18 \; \mu: \; -0.02 \; \nu: \; -1.49 \; \kappa_1: \; 1.44 \; \kappa_2: \; 1.36 \; \kappa_3: \; -1.03 \; \omega: \; -0.18 \; \mu: \; -0.02 \; \nu: \; -0.14 \; \kappa_3: \; -0.03 \; \omega: \; -0.14 \; \mu: \; -0.02 \; \nu: \; -0.14 \; \kappa_3: \; -0.03 \; \omega: \; -0.14 \; \omega: \; -0.14 \; \kappa_3: \; -0.03 \; \omega: \; -0.14 \;$ Cluster 4: ω: 0.14 μ: -0.05 ν: 1.73 κ₁: 1.47 κ₂: 1.45 κ₃: -0.97 Cluster 4: ω: 0.22 μ: -0.05 ν: 1.86 κ₁: 1.44 κ₂: 1.3 κ₃: -1.05

Cluster 1: ω : 0.41 μ : 3.13 ν : -1.47 κ_1 : 1.45 κ_2 : 1.39 κ_3 : -1.25 Cluster 2: ω: 0.31 μ: -3.12 ν: 1.55 κ₁: 1.47 κ₂: 1.44 κ₃: -1.16 Cluster 3: ω : 0.13 μ : 0.03 ν : -1.46 κ_1 : 1.48 κ_2 : 1.47 κ_3 : -0.89 Cluster 4: ω : 0.15 μ : 0.02 ν : 1.56 κ_1 : 1.48 κ_2 : 1.46 κ_3 : -0.92

Figure S1: Mixture models for correlated torsions. The contour plot indicates the log density of the mixture model and the points (in red) mark the mean location for the components. (Continued)

Figure S2: Mixture model for correlated torsions. The contour plot indicates the log density of a mixture model and the points (in red) mark the mean location for the components. Left: original correlated torsion that derived from filtered COD set. Right: updated correlated torsion by adding more observations from ChEMBL[12] database.

SMARTS Pattern:[#1][N](c(c)c)!@;-[C](=S)!@;-[NH1]!@;-[C](=O)

Figure S3: Higher order correlated torsions in (a) Crystal (b) MMFF94 and (c) GFN2. Torsion angles are measured in radian. We can see that all torsion angles are highly concentrated around 0° in crystal and GFN2. It suggests that the C=O and C=S are oriented in opposite directions and form a pseudo six-membered ring. This conformation promotes C=O – H-N intramoleccular hydrogen bond. The torsion angles in MMFF94 form a bimodal distribution (around 0° and 180°).

SMARTS Pattern:[#1][N](c(c)c)!@;-[C](=S)!@;-[NH1]!@;-[C](=O)

Figure S3: Higher order correlated torsions in (a) Crystal (b) MMFF94 and (c) GFN2. Torsion angles are measured in radian. We can see that all torsion angles are highly concentrated around 0° in crystal and GFN2. It suggests that the C=O and C=S are oriented in opposite directions and form a pseudo six-membered ring. This conformation promotes C=O – H-N intramoleccular hydrogen bond. The torsion angles in MMFF94 form a bimodal distribution (around 0° and 180°).

Appendices 3: Tables and Figures

Tables

Table S4: Wilcoxon signed rank test versus number of rotatable bonds with MMFF94 as energy function. BOA-EI and BOKEI are the Bayesian optimization with standard expected improvement and knowledge-based expected improvement respectively. GA represents the Genetic algorithm. We tested whether BOKEI found lower energy conformations than the two other methods, GA and BOA-EI, in the search (*i.e.* one-sided test). R (3.4.4)[13] was used to perform the hypothesis test. As the number of molecules with more than 10 rotatable bonds were small, we grouped the molecules with 11-13 and 14-18 rotatable bonds together when performing statistical test. The test showed the energy difference (between BOKEI and BOA-EI) was statistically significant (p < 0.01) across all rotatable bonds. The energy difference (between BOKEI and GA) were statistically significant up to ten rotatable bonds.

Number of rotatable bonds	BOKEI	BOA-EI	GA
2	NA	3.82e-05	3.82e-06
3	NA	1.50e-08	1.23e-10
4	NA	3.04e-06	2.16e-13
5	NA	3.42e-11	3.54 e- 16
6	NA	9.84e-09	3.66e-13
7	NA	8.15e-06	1.05e-11
8	NA	1.14e-07	1.66e-05
9	NA	1.25e-06	1.75e-05
10	NA	2.21e-05	4.17e-07
11-13	NA	4.00e-03	0.06
14-18	NA	1.00e-03	1

Table S5: Wilcoxon signed rank test across number of rotatable bonds on all stochastic search algorithms with GFN2 as energy function. BOKEI and BOA-EI stand for Bayesian optimization with standard expected improvement and knowledge-based expected improvement respectively. We would like to test whether BOKEI found lower energy conformation than BOA-EI in the search (*i.e.* one-sided test). We performed the statistical test in R (3.4.4)[13]. As the number of molecules with more than 10 rotatable bonds were small, we grouped the molecules with 11-13 together when performing statistical test. The test showed the energy difference (between BOKEI and BOA-EI) was statistically significant (p < 0.01) across all rotatable bonds.

Number of rotatable bonds	BOKEI	BOA-EI
2	NA	7.90e-04
3	NA	1.41e-06
4	NA	3.41e-08
5	NA	9.31e-07
6	NA	1.21e-04
7	NA	2.02e-06
8	NA	9.84e-07
9	NA	1.34e-04
10	NA	$\mathbf{2.34e}\text{-}04$
11-13	NA	6.14 e- 03

Table S6: Average MMFF94 energy difference in different stages: 40%, 60% and 100% of the maximum number of energy evaluations. The value found by BOA-EI was used as reference. Negative value indicated BOKEI found lower energy conformations than BOA-EI. The median and the interquartile range were reported. In general, BOKEI outperformed BOA-EI in the early stage, and the energy difference diminished as more evaluations were used.

No. of rotatable bonds	$Median_{40\%}$	$Median_{60\%}$	$Median_{100\%}$	$IQR_{40\%}$	$IQR_{60\%}$	$IQR_{100\%}$
2	-12.567	-8.482	-0.736	10.445	7.708	0.673
3	-17.910	-11.980	-1.151	22.897	14.648	1.454
4	-12.305	-8.897	-0.962	25.711	21.753	1.721
5	-24.361	-12.811	-2.324	55.886	44.117	3.666
6	-24.204	-15.089	-2.883	66.497	43.808	4.267
7	-16.496	-20.423	-1.995	87.715	72.510	5.328
8	-10.831	-15.354	-3.472	75.566	65.496	4.443
9	-30.170	-12.668	-4.177	174.034	117.217	4.443
10	-83.867	-18.585	-5.077	166.109	122.901	5.592
11	-87.031	-18.255	-4.801	585.249	133.746	11.216
12	-7.456	-66.339	-0.901	1072.109	410.378	8.915
13	24.885	284.054	-4.037	903.960	742.068	8.823
14-18	68.935	58.545	-3.569	1118.353	1020.377	12.773

Table S7: Average GFN2 energy difference in different stages: 40%, 60% and 100% of the maximum number of energy evaluations. The value found by BOA-EI was used as reference. Negative value indicated BOKEI found a lower energy conformation than BOA-EI. The median and the interquartile range were reported. In general, the BOKEI found lower energy conformations than BOA-EI in the early stage for molecules with seven or fewer rotatable bonds. The energy gap between BOKEI and BOA-EI diminished as more evaluations were used. The molecules with eight or more rotatable bonds had positive energy difference in the early stage, which suggested that some of the correlated torsions could be under-estimated.

No. of rotatable bonds	$\mathrm{Median}_{40\%}$	$\mathrm{Median}_{60\%}$	$\mathrm{Median}_{100\%}$	$\mathrm{IQR}_{40\%}$	$\mathrm{IQR}_{60\%}$	$\mathrm{IQR}_{100\%}$
2	-14.143	-8.438	-0.276	19.0	24.0	0.0
3	-33.585	-13.870	-0.658	79.0	68.0	1.0
4	-8.817	-11.639	-0.856	62.0	58.0	1.0
5	-53.612	-15.612	-1.815	371.0	221.0	4.0
6	-14.688	-22.946	-1.857	210.0	134.0	4.0
7	-71.926	-50.814	-1.772	391.0	367.0	3.0
8	54.914	4.356	-4.117	839.0	889.0	11.0
9	119.435	11.961	-2.927	1415.0	670.0	5.0
10	-57.236	-95.970	-3.228	1866.0	948.0	6.0
11	88.074	-950.314	-4.405	1728.0	3083.0	4.0
12	-1075.099	-921.136	-4.961	2683.0	3248.0	11.0
13	1148.000	1937.425	-3.796	7959.0	5380.0	11.0

Figures

Figure S4: (a) Example S1. (b) Example S2. The red line and the blue line in the plot represented average convergence rate of the BOKEI and BOA-EI in finding lower energy conformations respectively, with ± 1 sample standard deviation. The corresponding molecule and the correlated torsion is highlighted in red. GFN2 energy function was used. BOKEI consistently found lower energy conformations than BOA-EI in early stage and the energy gap reduced as the number of iterations increased.

Figure S5: (a) 5-phenylthioquinazoline-24diamine and its GFN2 potential energy surface. Posterior mean (normalized) energy landscape and posterior standard deviation. (b) BOA-EI (c) BOKEI. The samples were more concentrated in the low energy regions for BOKEI than that in BOA-EI. The BOA-EI had higher chance to sample in high energy region (around the corners). The uncertainty is high in the high energy regions, due to small number of observations.

Figure S6: (a) Percentage frequency of BOKEI found lower energy conformations than BOA-EI and GA, with geometry-optimized MMFF94 energy. (b) Percentage frequency of BOKEI found lower energy conformations than BOA-EI, with GFN2 energy.

Frequency of matched patterns in different data sets

Figure S7: Frequency of matched patterns in three data sets: Platinum dataset, Crystallography Open Database (COD) and ChEMBL 25. The pattern 5 and 8 are frequently observed, followed by pattern 17 and 18.

Figure S8: Sample standard deviation, s, of the energy of the output conformations in five independent runs: (a) MMFF94, and (b) GFN2. The sample standard deviation increases as the number of rotatable bonds increases in both cases. BOKEI has a lower median sample standard deviation than BOA in almost all cases. In (b), for a few molecules with eight and eleven rotatable bonds, one in five runs terminated with a high energy, which resulted in high sample standard deviations.

Appendices 4: Molecules in benchmark set and the molecules excluded from analysis

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		Name		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegacsd_PMBSAN10	0C1_3UPH_A	7X7_2VX0_A	LZ0_2VUD_B
$\begin{array}{llllllllllllllllllllllllllllllllllll$	${\rm omegapdb_1eby}$	0CA_3UPE_A	7X8_2VX1_A	M0A_5AWB_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$omegacsd_PEXJEH$	0CZ_3UUA_A	7XY_2OZ5_A	M72_4M73_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$omegacsd_VORDAH$	0HL_3VFE_A	85Z_5AK2_A	M73_4DJP_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$omegacsd_DIGSIV$	0HM_4D8N_A	861_4G50_A	$M86_4DJQ_A$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$omegacsd_CIJVAS$	0KJ_4DJR_A	879_3L38_A	$MG0_4MRO_A$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$omegacsd_DCTXAN$	$0LQ_4GB2_B$	8PC_3FNE_A	MGV_2V8Y_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	${ m omegapdb}_{1s63}$	$0LR_4GJ5_A$	8Y6_2YOJ_A	MJU_4KTN_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$omegacsd_HEXYIS$	$0LX_4DV8_A$	94M_3O6O_A	ML0_3HF8_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$omegacsd_BEKDIE$	$0NL_{4E4N}A$	$965_{3IPQ}A$	MP7_3QC4_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegacsd_PMPAIN	0NR_4E73_A	988_3G58_A	MPX_4ITO_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegacsd MVERIQ	$00G^{4E92}A$	993 ² P3T ^B	MS4 2WD3 A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegacsd NADYIA	0QX 4EPV A	9RA 4K6I A	MUJ 4AT5 A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegacsd_LINLAV	$0S2_4EO6_A$	A18_2Q96_A	MUU_2PSU_A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegacsd SAWZUL	$0S3^{4}EO8^{A}$	A60 309E A	MW5 ² YC3 ^A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegapdb 1w5v	0S6 4F3I A	A68 3SA9 A	MZ3 2QI0 B
$\begin{array}{llllllllllllllllllllllllllllllllllll$	omegacsd AOPCHY	$0SL^{4FA3}$ A	ANH 3PLK A	MZ4 2QI1 A
omegapdb2h420YN4MHWAAWF4CCUAMZ62QI4AomegacsdFABSOQ1016T4HLDAAX43BMOAMZ72QI5BomegacsdHEVXEL17D3QS8AAXI4AG8AMZ72QI5BomegacsdHEPGAK18F4JV6BB843IMXAN4I3QPJBomegacsdMBZTZT101A04HXWABBE4B5BAN7F4A5SAomegacsdSADXIE1AZ2WHIABK1317BANH72ZIRBomegacsdSADXIE1AZ2WHIABK1317BANH72ZIRBomegacsdFEYKUP1C22F6TABL24IK2ANJQ3NJQA1v4s1GJ4IVWABLF4DIJANK83QRSBomegacsdFAHXIV1JT4J3FABPQ3BLLANN3<2GIR	omegapdb 2f4j	0SZ 4FAM A	AVD 3CEM A	MZ5 ² QI3 ^B
omegacsd_FABSOQ1016T_4HLD_AAX4_3BMO_AMZ7_2QI5_Bomegacsd_HEVXEL17D_3QS8_AAXI_4AG8_AMZ8_2QI6_Aomegacsd_HEPGAK18F_4JV6_BB84_3IMX_AN4I_3QPJ_Bomegacsd_MBZTZT101A0_4HXW_ABBE_4B5B_AN7F_4A5S_Aomegacsd_SADXIE1AZ_2WHI_ABK1_3I7B_ANH7_2ZIR_Bomegacsd_FEYKUP1C2_2F6T_ABL2_4IK2_ANJQ_3NJQ_A1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_FURACM1ML_4JMU_ABSI_1I76_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_20Z7_AOCV_1HB1_Aomegacsd_TAZXAT1U4_3FV4_ACB6_2Y71_AOFG_4CCB_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegapdb 2h42	0YN 4MHW A	AWF 4CCU A	MZ6 ² QI4 ^A
omegacsd_HEVXEL17D_3QS8_AAXI_4AG8_AMZ8_2QI6_Aomegacsd_HEPGAK18F_4JV6_BB84_3IMX_AN4I_3QPJ_Bomegacsd_MBZTZT101A0_4HXW_ABBE_4B5B_AN7F_4A5S_Aomegacsd_SADXIE1AZ_2WHI_ABK1_3I7B_ANH7_2ZIR_Bomegacsd_FEYKUP1C2_2F6T_ABL2_4IK2_ANJQ_3NJQ_A1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABSI_1176_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_TAZXAT1U4_3FV4_ACB6_2Y71_AOFG_4CCB_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_A	omegacsd FABSOQ10	$16T 4HLD \overline{A}$	AX4 3BMO A	$MZ7^{2}QI5^{B}$
omegacsd_HEPGAK18F_4JV6_BB84_3IMX_AN4I_3QPJ_Bomegacsd_MBZTZT101A0_4HXW_ABBE_4B5B_AN7F_4A5S_Aomegacsd_SADXIE1AZ_2WHI_ABK1_3I7B_ANH7_2ZIR_Bomegacsd_FEYKUP1C2_2F6T_ABL2_4IK2_ANJQ_3NJQ_A1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_FAHXIV1H2_4J0R_ABLR_4I3B_ANN3_2GIR_Aomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_TAZXAT1U4_3FV4_ACB6_2Y71_AOFG_4CCB_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd HEVXEL	17D 3QS8 A	AXI ⁴ AG8 A	MZ8 ² QI6 ^A
omegacsd_MBZTZT101A0_4HXW_ABBE_4B5B_AN7F_4A5S_Aomegacsd_SADXIE1AZ_2WHI_ABK1_3I7B_ANH7_2ZIR_Bomegacsd_SADXIE1BN_3PB9_XBK3_3MWU_ANHK_3NX7_Aomegacsd_FEYKUP1C2_2F6T_ABL2_4IK2_ANJQ_3NJQ_A1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_LIKGIV1H2_4J0R_ABLR_4I3B_ANN3_2GIR_Aomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_FURACM1ML_4JMU_ABSI_1I76_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd HEPGAK	18F 4JV6 B	B84 JIMX A	N4I 3QPJ B
omegacsd_SADXIE1AZ_2WHI_ABK1_3I7B_ANH7_2ZIR_Bomegapdb_1xp01BN_3PB9_XBK3_3MWU_ANHK_3NX7_Aomegacsd_FEYKUP1C2_2F6T_ABL2_4IK2_ANJQ_3NJQ_A1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_LIKGIV1H2_4J0R_ABLR_4I3B_ANN3_2GIR_Aomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1I76_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd_MBZTZT10	$1A0_4HXW_A$	BBE_4B5B_A	$N7F_4A5S_A$
omegapdb_1xp01BN_3PB9_XBK3_3MWU_ANHK_3NX7_Aomegacsd_FEYKUP1C2_2F6T_ABL2_4IK2_ANJQ_3NJQ_A1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_LIKGIV1H2_4J0R_ABLR_4I3B_ANN3_2GIR_Aomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1176_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd SADXIE	1AZ 2WHI A	BK1 3I7B A	NH7 2ZIR B
omegacsd_FEYKUP1C2_2F6T_ABL2_4IK2_ANJQ_3NJQ_A1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_LIKGIV1H2_4J0R_ABLR_4I3B_ANN3_2GIR_Aomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1176_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_20Z7_AOCV_1HB1_Aomegacsd_TAZXAT1U4_3FV4_ACBO_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegapdb 1xp0	1BN 3PB9 X	BK3 ³ MWU A	NHK 3NX7 A
1v4s1GJ_4IVW_ABLF_4DIJ_ANK8_3QRS_Bomegacsd_LIKGIV1H2_4J0R_ABLR_4I3B_ANN3_2GIR_Aomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1I76_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd FEYKUP	1C2 2F6T A	BL2 4IK2 A	NJQ 3NJQ A
omegacsd_LIKGIV1H2_4J0R_ABLR_4I3B_ANN3_2GIR_Aomegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1176_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_20Z7_AOCV_1HB1_Aomegacsd_TAZXAT1U4_3FV4_ACB6_2Y71_AOFG_4CCB_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	1v4s	1GJ 4IVW A	BLF 4DIJ A	NK8 3QRS B
omegacsd_FAHXIV1JT_4J3F_ABPQ_3BLL_ANPM_4JIY_Aomegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1176_ANZA_2Q5S_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_TAZXAT1U4_3FV4_ACB6_2Y71_AOFG_4CCB_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd LIKGIV	1H2 4J0R A	BLR 4I3B A	NN3 ² GIR ^A
omegacsd_KAVLIC1KG_4JCH_ABPZ_2ZKC_ANSI_2HFP_Aomegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1176_ANZA_2Q5S_Aomegacsd_JOTDAX1OQ_4K2G_BC03_2P4Y_AO2N_3ZSO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd FAHXIV	1JT ⁴ J3F ^A	BPQ 3BLL A	NPM 4JIY A
omegacsd_ANTZOA1M9_4JJS_ABQM_3BQM_BNWL_4B3U_A1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1I76_ANZA_2Q5S_Aomegacsd_YOWYAK1OQ_4K2G_BC03_2P4Y_AO2N_3ZSO_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_TAZXAT1U4_3FV4_ACB6_2Y71_AOFG_4CCB_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd KAVLIC	1KG 4JCH A	BPZ 2ZKC A	NSI 2HFP A
1lpz1MB_4JJU_ABQN_3BQN_BNX6_3QH1_Aomegacsd_FURACM1ML_4JMU_ABSI_1176_ANZA_2Q5S_Aomegacsd_YOWYAK1OQ_4K2G_BC03_2P4Y_AO2N_3ZSO_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd ANTZOA	1M9 ⁴ JJS ^A	BQM 3BQM B	NWL 4B3U A
omegacsd_FURACM1ML_4JMU_ABSI_1176_ANZA_2Q5S_Aomegacsd_YOWYAK1OQ_4K2G_BC03_2P4Y_AO2N_3ZSO_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	1lpz	1MB 4JJU A	BQN 3BQN B	NX6 3QH1 A
omegacsd_YOWYAK1OQ_4K2G_BC03_2P4Y_AO2N_3ZSO_Aomegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd FURACM	1ML ⁴ JMU A	BSI 1176 A	NZA 2Q5S A
omegacsd_JOTDAX1P9_4K69_AC9A_3PHE_AOAP_1KVO_Aomegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd YOWYAK	10Q ⁴ K2G ^B	$C03^{-}2P4\overline{Y}$ A	O2N 3ZSO A
omegacsd_LADTOZ1QR_4KFN_ACA4_2OZ7_AOCV_1HB1_Aomegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd JOTDAX	1P9 4K69 A	C9A 3PHE A	OAP 1KVO A
omegacsd_VUSKID1U0_4KXY_ACB6_2Y71_AOFG_4CCB_Aomegacsd_TAZXAT1U4_3FV4_ACB0_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd LADTOZ	1QR 4KFN A	CA4 2OZ7 A	OCV 1HB1 A
omegacsd_TAZXAT1U4_3FV4_ACBO_2BEL_AOHT_2GPU_Aomegacsd_LIKBUC1V6_4L2L_ACEI_4MRY_AOYP_3RDE_Aomegacsd_GEKWAU1VJ_4OYB_ACGS_2W0D_AP36_3HP2_A	omegacsd VUSKID	1U0 4KXY A	CB6 ² Y71 ^A	OFG 4CCB A
omegacsd_LIKBUC 1V6_4L2L_A CEI_4MRY_A OYP_3RDE_A omegacsd_GEKWAU 1VJ_4OYB_A CGS_2W0D_A P36_3HP2_A	omegacsd TAZXAT	1U4 ³ FV4 A	CBO 2BEL A	OHT 2GPU A
omegacsd_GEKWAU 1VJ_4OYB_A CGS_2W0D_A P36_3HP2_A	omegacsd LIKBUC	1V64L2LA	CEI 4MRY A	OYP ³ RDE ^A
~	omegacsd GEKWAU	1VJ 40YB A	CGS 2W0D A	P36 3HP2 Ā
omegacsd_HASCOT 208_2GTK_A CJC 4GGL A P74 4AGO A	omegacsd_HASCOT	$208_{2}GTKA$	CJC_4GGL_A	P74_4AGO_A

Continued on next page

	Name		
omegacsd_CLPHAC	218_4MUU_A	CL6_2XFH_A	P9L_4A9L_A
omegacsd_PXBVCP10	$21L_{3V9V_A}$	CVI_3VW1_B	PBD_4MHY_A
omegacsd_FOPMIG	23U_3DHK_H	CZE_5DQF_A	PF6_3HQY_A
$omegacsd_SURREC$	240_2Q59_A	D2J_3NZ6_X	$PI6_1B6M_B$
omegapdb_1h6h	$24P_3FH5_A$	D2R_3TD8_A	PN3_3PN3_A
omegacsd_TAZPUF	$26G_4MES_A$	D32_3GZ9_A	$PT6_4CV2_A$
omegacsd_FAJVAN	274_2J7T_A	D71_3G4I_A	PU8_1UYD_A
omegacsd HEHVOF	28P $3U9W$ A	D99 3ASX A	PU9 1UYE A
omegacsd SEMXEN	2AZ 2GM1 A	DB4 4MXP A	PUZ 1UYI A
omegacsd LACPAG	2EY 4MYA A	DB8 4MX0 A	PYI 3D2V A
omegapdb 2fwz	2G6 4OI5 E	DF6 ³ VW8 ^A	PZX 4IE9 A
omegapdb 1d4i	2KD 4NJ3 A	DFH 4F60 A	Q13 4LWA A
omegacsd KOFLIA	2LK 4NR4 A	DG7 ³ PG3 ^A	Q16 4UGF A
omegacsd PACVUK	2N0 4PCE A	DH1_3F8Y_A	QGF 3Q2G A
omegacsd KOFKUL	20H 2E2R A	DKI 4AAA A	QLE 4B7S A
omegacsd YOXDEU	2PJ 4PES A	DS4 3W0Y A	QN7 4ACU A
omegacsd ACPIXZ	2QE 4NWC A	DS5 ^{3W0A} A	R11 1G32 B
omegacsd FUHLID	2SQ 40JR A	DS6 3AZ3 A	RF1 3G10 A
omegacsd KOFLOG	2T2 4OK5 A	DU4_3T70_A	RKD 4AXA A
omegacsd SIZDOU	2T9 40KS A	DUQ 2Y8C A	RO0 2FVJ A
omegacsd GIKJOZ	2TP 2C3U A	DWA 4FRI A	RX5 ³ Q4B ^A
omegacsd CODYUP10	2WZ 4PX5 A	E41 JZXH A	S5B 4AKN A
omegapdb 1g4s	2YK 4PY1 A	E5S 3WCJ A	S6L ⁵ AJW ^A
omegapdb 2aj8	2ZL 4PKR A	EA4 3RDD A	S8Z 4ACX A
omegacsd CYCLIZ10	30H 4PKS A	EFU 4EFU A	SF1 2Q61 A
omegacsd COYPIP	33M 4QJZ D	ENM 2PNU A	SK2 2F6V A
omegacsd PMCPRC10	33U ² ZO3 ^H	ER4 3WCM A	SK4 3FRG A
omegacsd BZAPUC20	355 4TOS A	F21 2G72 A	SP6 ² OW9 ^A
omegacsd NADZIB	370 4CAF A	F53 309G A	SUY 4GFN A
omegacsd FOYLIO	389 3F7G E	F72 3SA4 B	SX8 3DKG A
omegacsd HALSES	3BM 3EQC A	FPW 3TUC A	SZ8 3RXK A
omegapdb 2h03	3CZ 3CZR A	FRG 1M48 A	T05 4HLC A
omegapdb 1v2k	3EJ 3KEJ A	FTP ¹ G4T ^A	T08 ³ W0J ^A
lig3	3KE 3KEC A	G08 4NJS B	T27 4 KFB A
omegacsd DIAVER	3PZ 3PZ1 B	$GOG^{-}2PQZ^{-}A$	T74 3EQR A
omegapdb 1sa4	3Q5 ³ QD3 ^A	G3G ² R3W ^A	TDK 2EZ9 A
1ulc	3Q6 3QD4 A	$G73 4I2P \overline{A}$	TDL ² EZ8 ^A
omegacsd LEZGOM	3QO 3QOA A	GHW $3GI2$ A	TDP 5DGD A
omegacsd DAFVUB	3QT 3QTI A	GMF 4B0Q A	TH2 2CBO A
omegacsd BEXVOP	3U9 4CNH A	GRL 2HB3 B	TM3 3KPE A
omegacsd CIDSIR	3UE 4RPU A	GVJ 2UVZ A	TMI ² BDM ^A
omorpoid UIVDAD	419 3F7H A	GVK 2UWO A	TOP 4KM2 A
omegacsu juvran			
omegapdb 1vvx	43N 4XWA A	GVN 2UW5 A	TPP 2PGO A

	Name)	
omegacsd_COTXUE	454_3IGB_A	GVQ_2UW8_A	TPU_2WVA_A
$\operatorname{omegacsd}_{\operatorname{FAVYEG}}$	$46C_2ZDT_A$	H89_3U16_A	TPW_2JI6_A
omegacsd_FUMBOE	472_3IN3_A	H90_3U17_A	$TQ2_4E1M_A$
omegacsd_KUBHEU	478_3NU6_B	HBH_1Z1R_A	TQX_4E1N_A
omegacsd_PEBHAF	47D_2PDH_A	HDI_1LJT_A	$TR7_4B2L_A$
1mzc	4K0_4AOI_A	HI3_3TYV_A	TZD_2BFF_A
omegacsd_FAXPUP	4L3_4Z6I_A	$HM4_2NQ6_A$	TZM_4G44_A
omegacsd_SINKUV	$4NY_4ZG6_A$	HNR_4ARW_A	UA1_2I4G_A
omegacsd HAVLUL	400 4ZG7 A	HTJ 3084 A	UB2 ³ FVP A
omegacsd BZAPCX10	401 ⁴ Y76 ^A	HTL 3AHD A	UBA 2F34 A
omegacsd DERZAB	4Q3 4ZOM A	I24 $\overline{2}$ VVT \overline{A}	$UBC^{2}F35^{A}$
omegacsd VIPHOR	4V8 5BUE A	I5S ² JDO ^A	UBE ² QS3 ^A
omegacsd PEKCEO	4VT 5BWR A	I63 4DRK A	UBF ² OS2 ^A
omegacsd GASPUL	4XB 4B14 Ā	I6X 4B00 A	UBW 3T8C A
omegacsd ANTZOB	52U 5COK A	IC8 2X38 A	V10 2VBD A
omegacsd CUNTIO	52W 5CON B	IDQ 5AWD A	V4E 5A64 A
omegacsd_MICONZ	532 3S7M A	IMA 1LPG B	VDN 3B2B A
omegacsd_CALLEG	538_3KMG_A	IWH 4UCS A	VGF 2WD8 A
omegacsd_DEBBOB	54M 4B77 A	IXE 4IXE D	VGG_2WEL_A
omegacsd_VEXBOF	560 SINH A	IXE_4IXE_D	VHI 3VHI A
omegandh 1d4l	56M 5D25 A	IXC AIXC X	VIP AURZ R
omoraced FUHHAR	56R $5D1T$ A	INC_4INC_N	VMV ABOP A
omoraced NBPFNC	5011_{578} 2011_{Λ}		VX6 2F41 A
omegacsu_VOPDIN	57C 5D3H A	JJJ_2JJJ_A	$\frac{VX0}{2143}$
omegacsu_VOI DIN	501 287I A	$\frac{\text{JRP}_{\text{J}}}{\text{IDC}_{\text{I}}} \frac{\text{JRP}_{\text{I}}}{\text{VV7}_{\text{I}}} $	$W07 3W0C \Lambda$
omegacsu_IFIFRO	591_557L_A	JFC_IIVZ_A IO1 2002 A	$W07_3W0G_A$ $W70_2W70_A$
omegacsu_PILCOC	59D_5DEI_A	JQI_0092_A	$W/Q_{3}W/Q_{A}$
onegacsa_JOAFIL	59E_5DFD_A	JR9_4R5M_A	WCA_ZANP_A
omegacsa_DCLPE1	DBO_3SIE_A	JWI_4D4MI_A	WSH_ZYEL_A
omegacsa_HEVJA1	5H8_5DPE_E	K13_3099_A	$\Lambda 20_2\Lambda 2R_A$
omegapdb_lec0	5H9_5DPF_E	K14_309A_A	X45_3INF_A
omegapdb_2f34	5J9_5E13_A	K20_309C_A	XX8_4N4D_A
omegacsd_SIHGIZ	5JN_5E29_A	K23_3LBK_A	Y01_4XNV_A
1jla	5N2_5ECE_A	K2A_3O9B_A	Y38_4H84_A
omegapdb_2f14	5OU_5EIS_A	K2D_3O9F_A	Y46_3ZLK_A
omegapdb_2f6v	$5Y0_4AN3_A$	K88_2WEL_A	YNE_2YNE_A
omegapdb_2i0a	663_2P3U_B	$KGG_{4B78}A$	YPW_4CMO_A
omegacsd_KOFMIB	711_1QBO_A	KIM_3CJG_A	YR4_3AUN_A
$003_2 JFZ_A$	751_4 ANV_A	KLI_3UDL_A	Z81_3LHG_A
017_4DQE_B	$76E_5APK_A$	KR1_3LAK_A	ZAA_3BC5_A
053_3SKA_A	778_1S63_B	KRH_4B1F_A	ZAH_2BKL_A
054_3SKE_A	$77F_3SAA_B$	KRW_3ZXZ_A	ZEN_1V2K_T
065_2 QD7_B	$78M_4AFK_A$	$L23_2W71_A$	ZOO_3OOZ_A
082_3TY0_A	$79M_4UYO_B$	$L28_5D26_A$	ZST_2FZ8_A
08E 3U4O A	7PP 3NMO A	L33 5D3J A	ZZD 2WOG A

Name				
09A_3UDM_A	7X1_2VWU_A	LBY_2ZIN_A	ZZN_2WXG_A	
09D_3UDP_A	7X2_2VWW_A	LF0_4ID1_A	ZZO_2WXH_A	
09F_3UDR_A	7X4_2VWX_A	LF2_4GVM_A	220_2II	
09G_30DY_A	7X5_2VWY_A	LID_2GTM_A		
09L_4TKG_A	7X6_2VWZ_A	LUR_4OTY_A		

There were in total nine molecules (five in MMFF94 and four in GFN2) excluded from the analysis, due to early stopping in any one of the five runs. The molecules are listed in Table S9 and S10.

Table S9: Molecules that excluded from the analysis (MMFF94).

SMILES	Name
$\begin{array}{l} O(c1ccc(Nc2c3ccccc3[nH]c2c2cccc2)cc1)C\\ S(c1ccccc1)c1ncc(n1C)[C@H](O)c1ccccc1\\ N(C(C)C)(C(=O)c1ccc(cc1)C)c1c(sc(c1)c1ccccc1)C(=O)O\\ N1C(=O)/C(=C(\backslash CCC(=O)OC)/c2cccc2)/C=C1c1ccccc1\\ O=C(CCC)OC[C@@H](OC(=O)CCC)CO[P@@](=O)([O-])O\\ \end{array}$	OMEGACSD_PMPAIN OMEGACSD_VUSKID OMEGAPDB_1yvx OMEGACSD_FAXPUP
$ \begin{array}{l} [C@@H]1 \ [C@H](O)[C@H](O)[C@@H] \\ (OP(=O)([O-])[O-])[C@H](O)[C@H]1O \end{array} $	DB4_4MXP_A

Table S10: Molecules that excluded from the analysis (GFN2).

SMILES	Name
COc1c(ccc(c1)Cc1c2cc(c(cc2ccn1)OC)OC)OC)OC	OMEGACSD_MVERIQ
O = P([O-])([O-])O[P@](=O)([O-])OCCc1c(C)c(c(s1))	
[C@H](O)CO)Cc1cnc(C)nc1N	1U0_4KXY_A
O=C(N[O-])[C@@H](CCCC[NH2+]Cc1ccc(cc1)F)	
C[C@@H](OC)c1ccc(cc1)F	0LX_4DV8_A
c1cc(c(cc1C(c1ccc(c(c1)C)OC[C@@H](C(C)(C)C)O))	
(CC)CC)C)O[C@H](CCO)CO	YR4_3AUN_A

Acknowledgement

GRH thanks the National Science Foundation (CHE-1800435) for support. GMM thanks the EPSRC and MRC for financial support under grant number EP/L016044/1. The authors would like to acknowledge the use of the University of Oxford Advanced Research Computing (ARC) facility in carrying out this work. This research was supported in part by the University of Pittsburgh Center for Research Computing through the computational resources provided.

References

 J. C. Cole, O. Korb, P. McCabe, M. G. Read and R. Taylor, Journal of Chemical Information and Modeling, 2018, 58, PMID: 29425456, 615–629.

- (2) P. McCabe, O. Korb and J. Cole, Journal of chemical information and modeling, 2014, 54, DOI: 10. 1021/ci500156d.
- (3) K. V. Mardia, C. C. Taylor and G. K. Subramaniam, *Biometrics*, 2007, 63, 505–512.
- (4) K. V. Mardia and J. Frellsen, in *Bayesian Methods in Structural Bioinformatics*, ed. T. Hamelryck, K. Mardia and J. Ferkinghoff-Borg, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 159–178.
- (5) A. P. Dempster, N. M. Laird and D. B. Rubin, Journal of the Royal Statistical Society. Series B (Methodological), 1977, 39, 1–38.
- (6) T. A. Halgren, Journal of Computational Chemistry, 17, 490–519.
- C. Bannwarth, S. Ehlert and S. Grimme, Journal of Chemical Theory and Computation, 2019, 15, PMID: 30741547, 1652–1671.
- (8) S. Riniker and G. A. Landrum, *Journal of Chemical Information and Modeling*, 2015, **55**, PMID: 26575315, 2562–2574.
- (9) G. Landrum, RDKit: Open-Source Cheminformatics, Available at http://www.rdkit.org, 2018.
- (10) D. Wales and J. Doye, The Journal of Physical Chemistry A, 1998, 101, DOI: 10.1021/jp970984n.
- (11) S. Grimme, C. Bannwarth, S. Dohm, A. Hansen, J. Pisarek, P. Pracht, J. Seibert and F. Neese, Angewandte Chemie International Edition, 2017, 56, 14763–14769.
- (12) A. Gaulton, A. Hersey, M. Nowotka, A. P. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L. J. Bellis, E. Cibrián-Uhalte, M. Davies, N. Dedman, A. Karlsson, M. P. Magariños, J. P. Overington, G. Papadatos, I. Smit and A. R. Leach, *Nucleic Acids Research*, 2016, 45, D945–D954.
- (13) R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018.