Supporting information

Comparison of platinum photodeposition processes on two types of titanium dioxide photocatalysts

Muneaki Yamamoto,*a Yasuhiro Minoura,b Masato Akatsuka,c Satoshi Ogawa,b Shinya Yagi,d Akira Yamamoto,c,f Hisao Yoshida c,f and Tomoko Yoshida*a

*aAdvanced Research Institute for Natural Science and Technology, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
bGraduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
cApplied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
dInstitute for Materials and systems for sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
eGraduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan
fElements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8528, Japan

E-mail: tyoshida@ocarina.oasaka-cu.ac.jp
Fig. S1 Size distribution histograms of the Pt nanoparticles on various Pt/TiO$_2$ (anatase) and Pt/TiO$_2$ (rutile) samples with different Pt loadings amounts, which were prepared in the photodeposition method with the prolonged irradiation for 180 min.