Competition between the Heavy Atom Effect and Vibronic Coupling in Donor-Bridge-Acceptor Organometalics: Supporting Information.

Julien Eng, Stuart Thompson, Heather Goodwin, Dan Credgington and Thomas James Penfold

Contents

S1 Experimental Data 4

S2 Ag-Cz coordinates 5
 S1 GS – Co-planar ... 5
 S2 S1 – perpendicular .. 6
 S3 T1 – Co-planar ... 7
 S4 T1 – perpendicular ... 8

S3 Cu-Cz coordinates 9
 S1 GS – Co-planar ... 9
 S2 GS – Perpendicular .. 10
 S3 S1 – Perpendicular ... 11
 S4 T1 – Co-planar ... 12
 S5 T1 – Perpendicular .. 13
 S6 T2 – Co-planar ... 14
 S7 T2 – Perpendicular .. 15

S4 Spin-vibronic Hamiltonian and Quantum Dynamics 16
 S1 The kinetic energy operator .. 16
 S2 The potential energy ... 16
 S3 Wavepacket Dynamics .. 17

S5 Potential Energy Surfaces 18
 S1 The potential Ag-Cz .. 18
 S2 The potential Cu-Cz .. 20

S6 The Spin-Orbit Coupling Matrix Elements 21
 S1 SOC in Ag-Cz ... 21
 S2 SOC in Cu-Cz ... 22

S7 Supplementary Dynamics 22
 S1 Dynamics Ag-Cz ... 22
 S2 Dynamics Cu-Cz ... 26

List of Tables

S1 Cartesian coordinates of the ground state co-planar minimum of Ag-Cz. 5
S2 Cartesian coordinates of the S1 perpendicular minimum of Ag-Cz. 6
S3 Cartesian coordinates of the T1 co-planar minimum of Ag-Cz. 7
S4 Cartesian coordinates of the T1 perpendicular minimum of Ag-Cz. 8
List of Figures

S1 Experimental absorption (left) and normalised luminescence spectra of 0.5mg/ml of Au-Cz (blue), Ag-Cz (black) and Cu-Cz (red) recorded in toluene solution at 300 K. 4
S2 Transient Absorption of Au-Cz (left), Ag-Cz (middle) and Cu-Cz (right) in toluene on picosecond-microsecond time scales. The initial excited state absorption associated with the singlet is at centred around 680 nm for Au-Cz, 670 nm for Ag-Cz, 640 nm for Cu-Cz. Method as described in ref. 1. The ISC is evidenced by the growth a new PIA spectrum, whose peak is red-shifted versus the singlet PIA, and the loss of the original singlet PIA feature. Excitation at 400nm, corresponding to direct excitation of the charge-transfer absorption band. ... 4
S3 Diabatic potential energy curves (top) and vibronic coupling (bottom) for Cu-Cz (left), Ag-Cz (center), and Au-Cz (right) along r_{MN} ... 18
S4 Evolution of the diabatic population along time for Ag-Cz with the Hamiltonian without 3LE(Cz) ... 23
S5 Evolution of the diabatic population along time for Ag-Cz with the Hamiltonian without 3LE(CAAC) ... 24
S6 Evolution of the diabatic population along time for Ag-Cz with the Hamiltonian without 3LE(Cz) and 3LE(CAAC) ... 25
S7 Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without 1LE(CAAC) ... 26
S8 Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without 3LE(Cz) ... 27
S9 Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without 3LE(Cz) and 1LE(CAAC) ... 28
S10 Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without 3LE(CAAC) ... 29
Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without $^3\text{LE}(\text{Cz})$, $^3\text{LE}(\text{CAAC})$ and $^1\text{LE}(\text{CAAC})$.
Figure S1: Experimental absorption (left) and normalised luminescence spectra of 0.5mg/ml of **Au-Cz** (blue), **Ag-Cz** (black) and **Cu-Cz** (red) recorded in toluene solution at 300 K.

Figure S2: Transient Absorption of **Au-Cz** (left), **Ag-Cz** (middle) and **Cu-Cz** (right) in toluene on picosecond-microsecond time scales. The initial excited state absorption associated with the singlet is at centred around 680 nm for **Au-Cz**, 670 nm for **Ag-Cz**, 640 nm for **Cu-Cz**. Method as described in ref.1. The ISC is evidenced by the growth a new PIA spectrum, whose peak is red-shifted versus the singlet PIA, and the loss of the original singlet PIA feature. Excitation at 400nm, corresponding to direct excitation of the charge-transfer absorption band.
S2 Ag-Cz coordinates

S1 GS – Co-planar

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.260</td>
<td>-3.528</td>
<td>1.095</td>
<td>H</td>
<td>-0.805</td>
<td>-1.893</td>
<td>5.807</td>
<td>H</td>
<td>-0.422</td>
<td>-4.714</td>
<td>3.409</td>
</tr>
<tr>
<td>C</td>
<td>1.915</td>
<td>-3.857</td>
<td>1.200</td>
<td>H</td>
<td>-0.167</td>
<td>-2.925</td>
<td>4.513</td>
<td>H</td>
<td>-0.309</td>
<td>-5.518</td>
<td>1.832</td>
</tr>
<tr>
<td>C</td>
<td>0.982</td>
<td>-2.965</td>
<td>1.740</td>
<td>H</td>
<td>-1.582</td>
<td>-1.882</td>
<td>4.208</td>
<td>H</td>
<td>-1.866</td>
<td>-4.876</td>
<td>2.380</td>
</tr>
<tr>
<td>C</td>
<td>1.460</td>
<td>-1.721</td>
<td>2.208</td>
<td>H</td>
<td>-1.049</td>
<td>3.034</td>
<td>4.995</td>
<td>H</td>
<td>4.474</td>
<td>-0.550</td>
<td>4.133</td>
</tr>
<tr>
<td>C</td>
<td>2.812</td>
<td>-1.338</td>
<td>2.049</td>
<td>H</td>
<td>-1.120</td>
<td>4.377</td>
<td>3.863</td>
<td>H</td>
<td>4.871</td>
<td>1.071</td>
<td>3.508</td>
</tr>
<tr>
<td>C</td>
<td>3.693</td>
<td>-2.271</td>
<td>1.495</td>
<td>H</td>
<td>0.457</td>
<td>1.290</td>
<td>4.818</td>
<td>H</td>
<td>5.457</td>
<td>-0.369</td>
<td>2.665</td>
</tr>
<tr>
<td>N</td>
<td>0.219</td>
<td>0.127</td>
<td>-1.951</td>
<td>H</td>
<td>-1.069</td>
<td>0.553</td>
<td>5.317</td>
<td>H</td>
<td>2.656</td>
<td>0.916</td>
<td>0.455</td>
</tr>
<tr>
<td>C</td>
<td>-0.090</td>
<td>0.132</td>
<td>2.173</td>
<td>H</td>
<td>0.419</td>
<td>2.726</td>
<td>2.976</td>
<td>H</td>
<td>4.335</td>
<td>0.342</td>
<td>0.432</td>
</tr>
<tr>
<td>C</td>
<td>-0.885</td>
<td>0.995</td>
<td>3.139</td>
<td>H</td>
<td>-2.632</td>
<td>-0.329</td>
<td>3.098</td>
<td>H</td>
<td>3.927</td>
<td>1.855</td>
<td>1.279</td>
</tr>
<tr>
<td>C</td>
<td>-0.320</td>
<td>0.570</td>
<td>4.516</td>
<td>H</td>
<td>2.330</td>
<td>-0.141</td>
<td>4.905</td>
<td>C</td>
<td>1.061</td>
<td>-0.684</td>
<td>-2.673</td>
</tr>
<tr>
<td>C</td>
<td>0.326</td>
<td>-0.805</td>
<td>4.336</td>
<td>H</td>
<td>2.116</td>
<td>-1.914</td>
<td>4.908</td>
<td>C</td>
<td>0.896</td>
<td>-0.483</td>
<td>-4.076</td>
</tr>
<tr>
<td>C</td>
<td>-2.422</td>
<td>0.747</td>
<td>2.979</td>
<td>H</td>
<td>1.393</td>
<td>-0.922</td>
<td>6.194</td>
<td>C</td>
<td>-0.124</td>
<td>0.526</td>
<td>-4.203</td>
</tr>
<tr>
<td>C</td>
<td>-3.188</td>
<td>1.539</td>
<td>4.047</td>
<td>H</td>
<td>-2.431</td>
<td>0.633</td>
<td>0.796</td>
<td>C</td>
<td>-0.499</td>
<td>0.858</td>
<td>-2.867</td>
</tr>
<tr>
<td>Ag</td>
<td>0.058</td>
<td>0.184</td>
<td>0.100</td>
<td>H</td>
<td>-4.000</td>
<td>0.984</td>
<td>1.526</td>
<td>C</td>
<td>-1.489</td>
<td>1.826</td>
<td>-2.636</td>
</tr>
<tr>
<td>C</td>
<td>-2.919</td>
<td>3.038</td>
<td>3.880</td>
<td>H</td>
<td>-3.258</td>
<td>4.567</td>
<td>2.372</td>
<td>C</td>
<td>-0.743</td>
<td>1.161</td>
<td>-5.286</td>
</tr>
<tr>
<td>C</td>
<td>-1.413</td>
<td>3.301</td>
<td>3.990</td>
<td>H</td>
<td>-4.507</td>
<td>3.312</td>
<td>2.422</td>
<td>C</td>
<td>1.665</td>
<td>-1.217</td>
<td>-4.986</td>
</tr>
<tr>
<td>C</td>
<td>-0.663</td>
<td>2.519</td>
<td>2.901</td>
<td>H</td>
<td>1.572</td>
<td>-4.825</td>
<td>0.830</td>
<td>C</td>
<td>1.996</td>
<td>-1.620</td>
<td>-2.201</td>
</tr>
<tr>
<td>C</td>
<td>-2.675</td>
<td>2.704</td>
<td>1.417</td>
<td>H</td>
<td>-0.624</td>
<td>2.495</td>
<td>0.717</td>
<td>H</td>
<td>2.129</td>
<td>-1.781</td>
<td>-1.127</td>
</tr>
<tr>
<td>C</td>
<td>-1.176</td>
<td>2.984</td>
<td>1.536</td>
<td>H</td>
<td>2.555</td>
<td>0.601</td>
<td>2.912</td>
<td>H</td>
<td>3.478</td>
<td>-3.067</td>
<td>-2.767</td>
</tr>
<tr>
<td>C</td>
<td>-2.921</td>
<td>1.203</td>
<td>1.601</td>
<td>H</td>
<td>-0.808</td>
<td>-2.415</td>
<td>-0.279</td>
<td>C</td>
<td>-2.089</td>
<td>2.443</td>
<td>-3.726</td>
</tr>
<tr>
<td>N</td>
<td>0.557</td>
<td>-0.788</td>
<td>2.844</td>
<td>H</td>
<td>-2.064</td>
<td>-3.583</td>
<td>0.206</td>
<td>H</td>
<td>-1.782</td>
<td>2.086</td>
<td>-1.615</td>
</tr>
<tr>
<td>C</td>
<td>-0.615</td>
<td>-1.945</td>
<td>4.725</td>
<td>H</td>
<td>-0.472</td>
<td>-4.154</td>
<td>-0.345</td>
<td>H</td>
<td>-2.862</td>
<td>3.198</td>
<td>-3.556</td>
</tr>
<tr>
<td>C</td>
<td>1.624</td>
<td>-0.953</td>
<td>5.119</td>
<td>H</td>
<td>4.741</td>
<td>-1.995</td>
<td>1.358</td>
<td>C</td>
<td>2.588</td>
<td>-2.140</td>
<td>-4.509</td>
</tr>
<tr>
<td>C</td>
<td>-0.489</td>
<td>-3.344</td>
<td>1.688</td>
<td>H</td>
<td>-4.266</td>
<td>1.335</td>
<td>3.932</td>
<td>H</td>
<td>1.542</td>
<td>-1.065</td>
<td>-6.063</td>
</tr>
<tr>
<td>C</td>
<td>-0.782</td>
<td>-4.682</td>
<td>2.370</td>
<td>H</td>
<td>-2.924</td>
<td>1.209</td>
<td>5.065</td>
<td>H</td>
<td>3.195</td>
<td>-2.719</td>
<td>-5.211</td>
</tr>
<tr>
<td>C</td>
<td>3.333</td>
<td>0.058</td>
<td>2.355</td>
<td>H</td>
<td>-3.449</td>
<td>3.596</td>
<td>4.670</td>
<td>C</td>
<td>-1.723</td>
<td>2.118</td>
<td>-5.045</td>
</tr>
<tr>
<td>C</td>
<td>3.574</td>
<td>0.835</td>
<td>1.057</td>
<td>H</td>
<td>-3.033</td>
<td>3.015</td>
<td>0.422</td>
<td>H</td>
<td>-0.459</td>
<td>0.908</td>
<td>-6.311</td>
</tr>
<tr>
<td>C</td>
<td>4.598</td>
<td>0.045</td>
<td>3.216</td>
<td>H</td>
<td>-1.060</td>
<td>-2.563</td>
<td>2.209</td>
<td>H</td>
<td>-2.213</td>
<td>2.621</td>
<td>-5.882</td>
</tr>
<tr>
<td>C</td>
<td>-0.983</td>
<td>-3.372</td>
<td>0.237</td>
<td>H</td>
<td>3.967</td>
<td>-4.242</td>
<td>0.668</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S1: Cartesian coordinates of the ground state co-planar minimum of Ag-Cz.
Table S2: Cartesian coordinates of the S_1 perpendicular minimum of Ag-Cz.
S3 T$_1$ – Co-planar

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.717</td>
<td>-4.075</td>
<td>1.204</td>
<td>H</td>
<td>-1.735</td>
<td>-1.491</td>
<td>5.519</td>
<td>H</td>
<td>-1.132</td>
<td>-4.666</td>
<td>3.374</td>
</tr>
<tr>
<td>C</td>
<td>1.343</td>
<td>-4.210</td>
<td>1.218</td>
<td>H</td>
<td>-1.302</td>
<td>-2.772</td>
<td>4.389</td>
<td>H</td>
<td>-1.099</td>
<td>-5.543</td>
<td>1.847</td>
</tr>
<tr>
<td>C</td>
<td>0.520</td>
<td>-3.200</td>
<td>1.712</td>
<td>H</td>
<td>-2.196</td>
<td>-1.354</td>
<td>3.819</td>
<td>H</td>
<td>-2.558</td>
<td>-4.681</td>
<td>2.328</td>
</tr>
<tr>
<td>C</td>
<td>1.108</td>
<td>-2.034</td>
<td>2.237</td>
<td>H</td>
<td>-0.172</td>
<td>3.065</td>
<td>5.045</td>
<td>H</td>
<td>3.982</td>
<td>-1.453</td>
<td>4.491</td>
</tr>
<tr>
<td>C</td>
<td>2.509</td>
<td>-1.872</td>
<td>2.181</td>
<td>H</td>
<td>0.157</td>
<td>4.438</td>
<td>4.000</td>
<td>H</td>
<td>4.745</td>
<td>0.066</td>
<td>3.998</td>
</tr>
<tr>
<td>C</td>
<td>3.288</td>
<td>-2.904</td>
<td>1.669</td>
<td>H</td>
<td>0.730</td>
<td>0.938</td>
<td>4.764</td>
<td>H</td>
<td>5.154</td>
<td>-1.435</td>
<td>3.175</td>
</tr>
<tr>
<td>N</td>
<td>0.221</td>
<td>0.106</td>
<td>-2.130</td>
<td>H</td>
<td>-0.954</td>
<td>0.752</td>
<td>5.217</td>
<td>H</td>
<td>2.935</td>
<td>0.430</td>
<td>0.750</td>
</tr>
<tr>
<td>C</td>
<td>-0.047</td>
<td>0.128</td>
<td>2.079</td>
<td>H</td>
<td>1.188</td>
<td>2.394</td>
<td>3.054</td>
<td>H</td>
<td>4.493</td>
<td>-0.408</td>
<td>0.887</td>
</tr>
<tr>
<td>C</td>
<td>-0.584</td>
<td>1.164</td>
<td>3.062</td>
<td>H</td>
<td>-2.659</td>
<td>0.503</td>
<td>2.956</td>
<td>H</td>
<td>4.220</td>
<td>1.102</td>
<td>1.766</td>
</tr>
<tr>
<td>C</td>
<td>-0.233</td>
<td>0.536</td>
<td>4.429</td>
<td>H</td>
<td>1.919</td>
<td>-1.037</td>
<td>5.065</td>
<td>C</td>
<td>1.007</td>
<td>-0.702</td>
<td>2.893</td>
</tr>
<tr>
<td>C</td>
<td>-0.084</td>
<td>-0.971</td>
<td>4.224</td>
<td>H</td>
<td>1.144</td>
<td>-2.623</td>
<td>4.919</td>
<td>C</td>
<td>0.797</td>
<td>-0.480</td>
<td>2.422</td>
</tr>
<tr>
<td>C</td>
<td>-2.112</td>
<td>1.449</td>
<td>2.903</td>
<td>H</td>
<td>0.631</td>
<td>-1.499</td>
<td>6.181</td>
<td>C</td>
<td>-0.211</td>
<td>0.561</td>
<td>-4.348</td>
</tr>
<tr>
<td>C</td>
<td>-2.627</td>
<td>2.400</td>
<td>3.988</td>
<td>H</td>
<td>-2.079</td>
<td>1.428</td>
<td>0.747</td>
<td>C</td>
<td>-0.511</td>
<td>0.866</td>
<td>-2.992</td>
</tr>
<tr>
<td>Ag</td>
<td>0.093</td>
<td>0.120</td>
<td>0.024</td>
<td>H</td>
<td>-3.477</td>
<td>2.252</td>
<td>1.437</td>
<td>C</td>
<td>-1.457</td>
<td>1.839</td>
<td>-2.664</td>
</tr>
<tr>
<td>C</td>
<td>-1.886</td>
<td>3.733</td>
<td>3.908</td>
<td>H</td>
<td>-1.665</td>
<td>5.347</td>
<td>2.478</td>
<td>C</td>
<td>-0.860</td>
<td>1.223</td>
<td>-5.364</td>
</tr>
<tr>
<td>C</td>
<td>-0.385</td>
<td>3.486</td>
<td>4.057</td>
<td>H</td>
<td>-3.242</td>
<td>4.560</td>
<td>2.440</td>
<td>C</td>
<td>1.498</td>
<td>-1.211</td>
<td>-5.211</td>
</tr>
<tr>
<td>C</td>
<td>0.109</td>
<td>2.550</td>
<td>2.949</td>
<td>H</td>
<td>0.892</td>
<td>-5.117</td>
<td>0.828</td>
<td>C</td>
<td>1.919</td>
<td>-1.660</td>
<td>-2.444</td>
</tr>
<tr>
<td>C</td>
<td>-1.675</td>
<td>3.445</td>
<td>1.445</td>
<td>H</td>
<td>0.213</td>
<td>2.604</td>
<td>0.789</td>
<td>H</td>
<td>2.063</td>
<td>-1.827</td>
<td>-1.383</td>
</tr>
<tr>
<td>C</td>
<td>-0.173</td>
<td>3.221</td>
<td>1.607</td>
<td>H</td>
<td>2.462</td>
<td>0.027</td>
<td>3.118</td>
<td>H</td>
<td>3.329</td>
<td>-3.138</td>
<td>-3.075</td>
</tr>
<tr>
<td>C</td>
<td>-2.397</td>
<td>2.103</td>
<td>1.549</td>
<td>H</td>
<td>-1.118</td>
<td>-2.514</td>
<td>-0.374</td>
<td>C</td>
<td>-2.101</td>
<td>2.496</td>
<td>-3.701</td>
</tr>
<tr>
<td>N</td>
<td>0.306</td>
<td>-1.008</td>
<td>2.804</td>
<td>H</td>
<td>-2.514</td>
<td>-3.499</td>
<td>0.086</td>
<td>H</td>
<td>-1.674</td>
<td>2.066</td>
<td>-1.629</td>
</tr>
<tr>
<td>C</td>
<td>-1.409</td>
<td>-1.691</td>
<td>4.494</td>
<td>H</td>
<td>-0.997</td>
<td>-4.280</td>
<td>-0.376</td>
<td>H</td>
<td>-2.841</td>
<td>3.254</td>
<td>-3.476</td>
</tr>
<tr>
<td>C</td>
<td>-0.979</td>
<td>-3.383</td>
<td>1.610</td>
<td>H</td>
<td>-3.701</td>
<td>2.566</td>
<td>3.841</td>
<td>H</td>
<td>1.354</td>
<td>-1.062</td>
<td>-6.275</td>
</tr>
<tr>
<td>C</td>
<td>-1.466</td>
<td>-4.636</td>
<td>2.335</td>
<td>H</td>
<td>-2.521</td>
<td>1.968</td>
<td>4.987</td>
<td>H</td>
<td>2.972</td>
<td>-2.752</td>
<td>-5.476</td>
</tr>
<tr>
<td>C</td>
<td>3.208</td>
<td>-0.606</td>
<td>2.634</td>
<td>H</td>
<td>-2.232</td>
<td>4.397</td>
<td>4.709</td>
<td>C</td>
<td>-1.810</td>
<td>2.195</td>
<td>-5.028</td>
</tr>
<tr>
<td>C</td>
<td>3.746</td>
<td>0.174</td>
<td>1.435</td>
<td>H</td>
<td>-1.878</td>
<td>3.901</td>
<td>0.469</td>
<td>H</td>
<td>-0.649</td>
<td>1.005</td>
<td>-6.405</td>
</tr>
<tr>
<td>C</td>
<td>4.332</td>
<td>-0.877</td>
<td>3.632</td>
<td>H</td>
<td>-1.443</td>
<td>-2.510</td>
<td>2.067</td>
<td>H</td>
<td>-2.329</td>
<td>2.724</td>
<td>-5.819</td>
</tr>
<tr>
<td>C</td>
<td>-1.425</td>
<td>-3.422</td>
<td>0.150</td>
<td>H</td>
<td>3.342</td>
<td>-4.877</td>
<td>0.825</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S3: Cartesian coordinates of the T$_1$ co-planar minimum of Ag-Cz.
Table S4: Cartesian coordinates of the T₁ perpendicular minimum of Ag-Cz.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.025</td>
<td>-3.916</td>
<td>1.314</td>
<td>H</td>
<td>-1.696</td>
<td>-1.569</td>
<td>4.594</td>
<td>H</td>
<td>-0.828</td>
<td>-4.735</td>
<td>3.428</td>
</tr>
<tr>
<td>C</td>
<td>1.664</td>
<td>-4.144</td>
<td>1.301</td>
<td>H</td>
<td>-1.159</td>
<td>-2.837</td>
<td>4.394</td>
<td>H</td>
<td>-0.658</td>
<td>-5.641</td>
<td>1.927</td>
</tr>
<tr>
<td>C</td>
<td>0.762</td>
<td>-3.190</td>
<td>1.768</td>
<td>H</td>
<td>-2.123</td>
<td>-1.484</td>
<td>3.781</td>
<td>H</td>
<td>-2.206</td>
<td>-4.900</td>
<td>2.331</td>
</tr>
<tr>
<td>C</td>
<td>1.256</td>
<td>-1.979</td>
<td>2.288</td>
<td>H</td>
<td>-0.395</td>
<td>3.046</td>
<td>4.995</td>
<td>H</td>
<td>4.032</td>
<td>-1.183</td>
<td>4.602</td>
</tr>
<tr>
<td>C</td>
<td>2.644</td>
<td>-1.725</td>
<td>2.265</td>
<td>H</td>
<td>-0.132</td>
<td>4.431</td>
<td>3.945</td>
<td>H</td>
<td>4.698</td>
<td>0.383</td>
<td>4.110</td>
</tr>
<tr>
<td>C</td>
<td>3.504</td>
<td>-2.706</td>
<td>1.782</td>
<td>H</td>
<td>0.634</td>
<td>0.998</td>
<td>4.742</td>
<td>H</td>
<td>5.228</td>
<td>-1.094</td>
<td>3.311</td>
</tr>
<tr>
<td>N</td>
<td>0.143</td>
<td>0.065</td>
<td>-2.147</td>
<td>H</td>
<td>-1.039</td>
<td>0.713</td>
<td>5.182</td>
<td>H</td>
<td>2.926</td>
<td>0.603</td>
<td>0.839</td>
</tr>
<tr>
<td>C</td>
<td>-0.050</td>
<td>0.095</td>
<td>2.065</td>
<td>H</td>
<td>1.030</td>
<td>2.443</td>
<td>3.026</td>
<td>H</td>
<td>4.534</td>
<td>-0.143</td>
<td>0.986</td>
</tr>
<tr>
<td>C</td>
<td>-0.667</td>
<td>1.113</td>
<td>3.023</td>
<td>H</td>
<td>-2.697</td>
<td>0.330</td>
<td>2.885</td>
<td>H</td>
<td>4.165</td>
<td>1.353</td>
<td>1.858</td>
</tr>
<tr>
<td>C</td>
<td>-0.297</td>
<td>0.529</td>
<td>4.406</td>
<td>H</td>
<td>1.933</td>
<td>-0.895</td>
<td>5.117</td>
<td>C</td>
<td>1.206</td>
<td>0.278</td>
<td>-2.972</td>
</tr>
<tr>
<td>C</td>
<td>-0.050</td>
<td>-0.967</td>
<td>4.228</td>
<td>H</td>
<td>1.261</td>
<td>2.528</td>
<td>4.982</td>
<td>C</td>
<td>0.833</td>
<td>0.209</td>
<td>-4.343</td>
</tr>
<tr>
<td>C</td>
<td>-2.205</td>
<td>1.307</td>
<td>2.834</td>
<td>H</td>
<td>0.649</td>
<td>-1.416</td>
<td>6.210</td>
<td>C</td>
<td>-0.590</td>
<td>-0.076</td>
<td>-4.330</td>
</tr>
<tr>
<td>C</td>
<td>-2.791</td>
<td>2.232</td>
<td>3.907</td>
<td>H</td>
<td>-2.125</td>
<td>1.290</td>
<td>0.677</td>
<td>C</td>
<td>-0.937</td>
<td>-0.148</td>
<td>-2.954</td>
</tr>
<tr>
<td>Ag</td>
<td>0.091</td>
<td>0.082</td>
<td>0.012</td>
<td>H</td>
<td>-3.591</td>
<td>2.017</td>
<td>1.339</td>
<td>C</td>
<td>-2.250</td>
<td>-0.409</td>
<td>-2.557</td>
</tr>
<tr>
<td>C</td>
<td>-2.129</td>
<td>3.605</td>
<td>3.832</td>
<td>H</td>
<td>-1.977</td>
<td>5.224</td>
<td>2.399</td>
<td>C</td>
<td>-1.549</td>
<td>-0.266</td>
<td>-5.296</td>
</tr>
<tr>
<td>C</td>
<td>-0.618</td>
<td>3.450</td>
<td>4.002</td>
<td>H</td>
<td>-3.509</td>
<td>4.352</td>
<td>2.341</td>
<td>C</td>
<td>1.774</td>
<td>0.398</td>
<td>-5.326</td>
</tr>
<tr>
<td>C</td>
<td>-0.056</td>
<td>2.536</td>
<td>2.906</td>
<td>H</td>
<td>1.286</td>
<td>-5.082</td>
<td>0.909</td>
<td>C</td>
<td>2.527</td>
<td>0.531</td>
<td>-2.599</td>
</tr>
<tr>
<td>C</td>
<td>-2.427</td>
<td>4.226</td>
<td>2.469</td>
<td>H</td>
<td>0.122</td>
<td>4.168</td>
<td>1.506</td>
<td>C</td>
<td>3.463</td>
<td>0.720</td>
<td>-3.602</td>
</tr>
<tr>
<td>C</td>
<td>-1.867</td>
<td>3.322</td>
<td>1.374</td>
<td>H</td>
<td>0.067</td>
<td>2.580</td>
<td>0.747</td>
<td>H</td>
<td>2.804</td>
<td>0.571</td>
<td>-1.553</td>
</tr>
<tr>
<td>C</td>
<td>-0.358</td>
<td>3.182</td>
<td>1.556</td>
<td>H</td>
<td>2.442</td>
<td>0.172</td>
<td>3.177</td>
<td>H</td>
<td>4.495</td>
<td>0.919</td>
<td>-3.341</td>
</tr>
<tr>
<td>C</td>
<td>-2.505</td>
<td>1.939</td>
<td>1.473</td>
<td>H</td>
<td>-0.867</td>
<td>-2.674</td>
<td>-0.370</td>
<td>C</td>
<td>-3.204</td>
<td>-0.599</td>
<td>-3.543</td>
</tr>
<tr>
<td>N</td>
<td>0.373</td>
<td>-1.001</td>
<td>2.818</td>
<td>H</td>
<td>-2.206</td>
<td>-3.740</td>
<td>-0.087</td>
<td>H</td>
<td>-2.502</td>
<td>-0.461</td>
<td>-1.505</td>
</tr>
<tr>
<td>C</td>
<td>-1.334</td>
<td>-1.764</td>
<td>4.480</td>
<td>H</td>
<td>-0.631</td>
<td>-4.425</td>
<td>-0.328</td>
<td>H</td>
<td>-4.230</td>
<td>-0.804</td>
<td>-3.263</td>
</tr>
<tr>
<td>C</td>
<td>1.017</td>
<td>-1.482</td>
<td>5.183</td>
<td>H</td>
<td>4.572</td>
<td>-2.518</td>
<td>1.776</td>
<td>C</td>
<td>3.096</td>
<td>0.657</td>
<td>-4.943</td>
</tr>
<tr>
<td>C</td>
<td>-0.716</td>
<td>-3.485</td>
<td>1.639</td>
<td>H</td>
<td>-3.871</td>
<td>2.335</td>
<td>3.743</td>
<td>H</td>
<td>1.511</td>
<td>0.350</td>
<td>-6.376</td>
</tr>
<tr>
<td>C</td>
<td>-1.123</td>
<td>-4.759</td>
<td>2.377</td>
<td>H</td>
<td>-2.675</td>
<td>1.810</td>
<td>4.909</td>
<td>H</td>
<td>3.849</td>
<td>0.808</td>
<td>-5.708</td>
</tr>
<tr>
<td>C</td>
<td>3.243</td>
<td>-0.410</td>
<td>2.719</td>
<td>H</td>
<td>-2.525</td>
<td>4.249</td>
<td>4.625</td>
<td>C</td>
<td>-2.863</td>
<td>-0.530</td>
<td>-4.890</td>
</tr>
<tr>
<td>C</td>
<td>3.750</td>
<td>0.397</td>
<td>1.526</td>
<td>H</td>
<td>-2.082</td>
<td>3.756</td>
<td>0.391</td>
<td>H</td>
<td>-1.307</td>
<td>-0.215</td>
<td>-6.352</td>
</tr>
<tr>
<td>C</td>
<td>4.360</td>
<td>-0.591</td>
<td>3.744</td>
<td>H</td>
<td>-1.256</td>
<td>-2.643</td>
<td>2.068</td>
<td>H</td>
<td>-3.629</td>
<td>-0.682</td>
<td>-5.641</td>
</tr>
<tr>
<td>C</td>
<td>-1.126</td>
<td>-3.586</td>
<td>0.170</td>
<td>H</td>
<td>3.711</td>
<td>-4.673</td>
<td>0.951</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S4 T₁ – perpendicular
S3 Cu-Cz coordinates

S1 GS – Co-planar

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.666</td>
<td>-3.246</td>
<td>1.135</td>
<td>H</td>
<td>-0.695</td>
<td>-2.117</td>
<td>5.629</td>
<td>H</td>
<td>-0.010</td>
<td>-4.915</td>
<td>3.067</td>
</tr>
<tr>
<td>C</td>
<td>2.356</td>
<td>-3.705</td>
<td>1.151</td>
<td>H</td>
<td>0.070</td>
<td>-3.036</td>
<td>4.318</td>
<td>H</td>
<td>0.221</td>
<td>-5.564</td>
<td>1.430</td>
</tr>
<tr>
<td>C</td>
<td>1.310</td>
<td>-2.909</td>
<td>1.632</td>
<td>H</td>
<td>-1.438</td>
<td>-2.128</td>
<td>4.014</td>
<td>H</td>
<td>-1.397</td>
<td>-5.088</td>
<td>1.963</td>
</tr>
<tr>
<td>C</td>
<td>1.635</td>
<td>-1.628</td>
<td>2.123</td>
<td>H</td>
<td>-1.344</td>
<td>2.896</td>
<td>4.823</td>
<td>H</td>
<td>4.568</td>
<td>-0.071</td>
<td>4.062</td>
</tr>
<tr>
<td>C</td>
<td>3.951</td>
<td>-1.951</td>
<td>1.553</td>
<td>H</td>
<td>0.183</td>
<td>1.207</td>
<td>4.798</td>
<td>H</td>
<td>5.452</td>
<td>0.237</td>
<td>2.551</td>
</tr>
<tr>
<td>N</td>
<td>0.199</td>
<td>0.108</td>
<td>-1.757</td>
<td>H</td>
<td>-1.279</td>
<td>0.275</td>
<td>5.121</td>
<td>H</td>
<td>2.346</td>
<td>1.035</td>
<td>0.497</td>
</tr>
<tr>
<td>C</td>
<td>-0.094</td>
<td>0.051</td>
<td>2.045</td>
<td>H</td>
<td>0.271</td>
<td>2.621</td>
<td>2.917</td>
<td>H</td>
<td>4.098</td>
<td>0.787</td>
<td>0.366</td>
</tr>
<tr>
<td>C</td>
<td>-0.977</td>
<td>0.843</td>
<td>2.991</td>
<td>H</td>
<td>-2.660</td>
<td>-0.548</td>
<td>2.857</td>
<td>H</td>
<td>3.467</td>
<td>2.212</td>
<td>1.236</td>
</tr>
<tr>
<td>C</td>
<td>-0.472</td>
<td>0.420</td>
<td>4.391</td>
<td>H</td>
<td>2.237</td>
<td>0.007</td>
<td>4.873</td>
<td>C</td>
<td>-0.616</td>
<td>0.664</td>
<td>-2.716</td>
</tr>
<tr>
<td>C</td>
<td>0.340</td>
<td>-0.867</td>
<td>4.214</td>
<td>H</td>
<td>2.222</td>
<td>-1.777</td>
<td>4.855</td>
<td>C</td>
<td>-0.135</td>
<td>0.389</td>
<td>-4.030</td>
</tr>
<tr>
<td>C</td>
<td>-2.487</td>
<td>0.536</td>
<td>2.739</td>
<td>H</td>
<td>1.340</td>
<td>-0.886</td>
<td>6.114</td>
<td>C</td>
<td>1.059</td>
<td>-0.395</td>
<td>-3.847</td>
</tr>
<tr>
<td>C</td>
<td>-3.350</td>
<td>1.306</td>
<td>3.746</td>
<td>H</td>
<td>-2.312</td>
<td>0.407</td>
<td>0.572</td>
<td>C</td>
<td>1.207</td>
<td>-0.537</td>
<td>-2.437</td>
</tr>
<tr>
<td>Cu</td>
<td>0.032</td>
<td>0.138</td>
<td>0.134</td>
<td>H</td>
<td>-3.958</td>
<td>0.688</td>
<td>1.161</td>
<td>C</td>
<td>2.281</td>
<td>-1.269</td>
<td>-1.910</td>
</tr>
<tr>
<td>C</td>
<td>-3.131</td>
<td>2.813</td>
<td>3.579</td>
<td>H</td>
<td>-3.420</td>
<td>4.315</td>
<td>2.035</td>
<td>C</td>
<td>1.993</td>
<td>-0.976</td>
<td>-4.713</td>
</tr>
<tr>
<td>C</td>
<td>-1.649</td>
<td>3.137</td>
<td>3.791</td>
<td>H</td>
<td>-4.621</td>
<td>3.015</td>
<td>2.011</td>
<td>C</td>
<td>-0.828</td>
<td>0.865</td>
<td>-5.149</td>
</tr>
<tr>
<td>C</td>
<td>-0.795</td>
<td>2.374</td>
<td>2.768</td>
<td>H</td>
<td>2.130</td>
<td>-4.700</td>
<td>0.761</td>
<td>C</td>
<td>-1.790</td>
<td>1.412</td>
<td>-2.544</td>
</tr>
<tr>
<td>C</td>
<td>-3.550</td>
<td>3.228</td>
<td>2.168</td>
<td>H</td>
<td>-1.051</td>
<td>3.882</td>
<td>1.242</td>
<td>C</td>
<td>-2.464</td>
<td>1.874</td>
<td>-3.668</td>
</tr>
<tr>
<td>C</td>
<td>-2.702</td>
<td>2.468</td>
<td>1.145</td>
<td>H</td>
<td>-0.605</td>
<td>2.296</td>
<td>0.599</td>
<td>H</td>
<td>-2.165</td>
<td>1.621</td>
<td>-1.540</td>
</tr>
<tr>
<td>C</td>
<td>-1.224</td>
<td>2.799</td>
<td>1.362</td>
<td>H</td>
<td>2.454</td>
<td>0.752</td>
<td>2.952</td>
<td>H</td>
<td>-3.381</td>
<td>2.456</td>
<td>-3.542</td>
</tr>
<tr>
<td>C</td>
<td>-2.901</td>
<td>0.959</td>
<td>1.324</td>
<td>H</td>
<td>-0.436</td>
<td>-2.270</td>
<td>-0.360</td>
<td>C</td>
<td>3.195</td>
<td>-1.838</td>
<td>-2.789</td>
</tr>
<tr>
<td>N</td>
<td>0.621</td>
<td>-0.803</td>
<td>2.735</td>
<td>H</td>
<td>-1.596</td>
<td>-3.604</td>
<td>-0.108</td>
<td>H</td>
<td>2.389</td>
<td>-1.389</td>
<td>-0.830</td>
</tr>
<tr>
<td>C</td>
<td>-0.479</td>
<td>-2.113</td>
<td>4.550</td>
<td>H</td>
<td>0.073</td>
<td>-3.949</td>
<td>-0.633</td>
<td>H</td>
<td>4.036</td>
<td>-2.411</td>
<td>-2.388</td>
</tr>
<tr>
<td>C</td>
<td>1.615</td>
<td>-0.880</td>
<td>5.049</td>
<td>H</td>
<td>4.974</td>
<td>-1.576</td>
<td>1.480</td>
<td>C</td>
<td>-1.991</td>
<td>1.606</td>
<td>-4.964</td>
</tr>
<tr>
<td>C</td>
<td>-0.119</td>
<td>-3.403</td>
<td>1.479</td>
<td>H</td>
<td>-4.411</td>
<td>1.056</td>
<td>3.571</td>
<td>H</td>
<td>-0.462</td>
<td>0.654</td>
<td>-6.157</td>
</tr>
<tr>
<td>C</td>
<td>-0.332</td>
<td>-4.816</td>
<td>2.019</td>
<td>H</td>
<td>-3.132</td>
<td>0.998</td>
<td>4.782</td>
<td>H</td>
<td>-2.542</td>
<td>1.981</td>
<td>-5.830</td>
</tr>
<tr>
<td>C</td>
<td>3.275</td>
<td>0.342</td>
<td>2.345</td>
<td>H</td>
<td>-3.736</td>
<td>3.357</td>
<td>4.324</td>
<td>C</td>
<td>3.058</td>
<td>-1.694</td>
<td>-4.182</td>
</tr>
<tr>
<td>C</td>
<td>3.300</td>
<td>1.141</td>
<td>1.038</td>
<td>H</td>
<td>-3.000</td>
<td>2.762</td>
<td>0.126</td>
<td>H</td>
<td>1.885</td>
<td>-0.867</td>
<td>-5.796</td>
</tr>
<tr>
<td>C</td>
<td>4.567</td>
<td>0.526</td>
<td>3.137</td>
<td>H</td>
<td>-0.772</td>
<td>-2.725</td>
<td>2.045</td>
<td>H</td>
<td>3.794</td>
<td>-2.152</td>
<td>-4.847</td>
</tr>
<tr>
<td>C</td>
<td>-0.543</td>
<td>-3.302</td>
<td>0.011</td>
<td>H</td>
<td>4.466</td>
<td>-3.888</td>
<td>0.760</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S5: Cartesian coordinates of the ground state co-planar minimum of Cu-Cz.
Table S6: Cartesian coordinates of the ground state perpendicular minimum of Cu-Cz.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C 2</td>
<td>1.499</td>
<td>-2.955</td>
<td>1.793</td>
<td>H 1</td>
<td>-0.109</td>
<td>1.602</td>
<td>5.538</td>
<td>H 11</td>
<td>-0.109</td>
<td>2.538</td>
<td>3.159</td>
</tr>
<tr>
<td>C 3</td>
<td>1.749</td>
<td>-1.666</td>
<td>2.303</td>
<td>H 2</td>
<td>-1.373</td>
<td>2.950</td>
<td>4.602</td>
<td>H 12</td>
<td>-1.177</td>
<td>2.228</td>
<td>1.644</td>
</tr>
<tr>
<td>C 4</td>
<td>3.054</td>
<td>-1.125</td>
<td>2.353</td>
<td>H 3</td>
<td>-1.407</td>
<td>4.235</td>
<td>3.395</td>
<td>H 13</td>
<td>0.501</td>
<td>-5.640</td>
<td>1.582</td>
</tr>
<tr>
<td>C 5</td>
<td>4.115</td>
<td>-1.940</td>
<td>1.952</td>
<td>H 4</td>
<td>0.160</td>
<td>1.228</td>
<td>4.728</td>
<td>H 14</td>
<td>-1.177</td>
<td>5.190</td>
<td>1.918</td>
</tr>
<tr>
<td>C 6</td>
<td>0.180</td>
<td>0.128</td>
<td>-1.795</td>
<td>H 5</td>
<td>-1.359</td>
<td>0.377</td>
<td>5.017</td>
<td>H 15</td>
<td>4.511</td>
<td>-0.081</td>
<td>4.495</td>
</tr>
<tr>
<td>C 7</td>
<td>0.019</td>
<td>-0.006</td>
<td>2.027</td>
<td>H 6</td>
<td>0.356</td>
<td>2.587</td>
<td>2.814</td>
<td>H 16</td>
<td>4.639</td>
<td>1.588</td>
<td>3.879</td>
</tr>
<tr>
<td>C 8</td>
<td>-0.921</td>
<td>0.828</td>
<td>2.881</td>
<td>H 7</td>
<td>-2.617</td>
<td>-0.542</td>
<td>2.701</td>
<td>H 17</td>
<td>5.484</td>
<td>0.273</td>
<td>3.050</td>
</tr>
<tr>
<td>C 9</td>
<td>-0.511</td>
<td>0.451</td>
<td>4.325</td>
<td>H 8</td>
<td>2.104</td>
<td>-0.092</td>
<td>5.100</td>
<td>C 18</td>
<td>2.486</td>
<td>1.026</td>
<td>0.822</td>
</tr>
<tr>
<td>C 10</td>
<td>0.248</td>
<td>-0.876</td>
<td>4.244</td>
<td>H 9</td>
<td>2.008</td>
<td>-1.874</td>
<td>5.066</td>
<td>C 19</td>
<td>4.252</td>
<td>0.841</td>
<td>0.792</td>
</tr>
<tr>
<td>C 11</td>
<td>-2.416</td>
<td>0.532</td>
<td>2.548</td>
<td>H 10</td>
<td>1.042</td>
<td>-0.947</td>
<td>6.235</td>
<td>C 20</td>
<td>3.521</td>
<td>2.228</td>
<td>1.644</td>
</tr>
<tr>
<td>C 12</td>
<td>-3.331</td>
<td>1.356</td>
<td>3.465</td>
<td>H 11</td>
<td>-2.121</td>
<td>0.319</td>
<td>0.393</td>
<td>C 21</td>
<td>-0.568</td>
<td>-0.093</td>
<td>-3.976</td>
</tr>
<tr>
<td>Cu</td>
<td>0.205</td>
<td>0.059</td>
<td>0.113</td>
<td>H 12</td>
<td>-3.789</td>
<td>0.643</td>
<td>0.878</td>
<td>C 22</td>
<td>-0.813</td>
<td>-0.380</td>
<td>-2.599</td>
</tr>
<tr>
<td>C 14</td>
<td>-1.606</td>
<td>3.161</td>
<td>3.545</td>
<td>H 14</td>
<td>-4.464</td>
<td>3.010</td>
<td>1.583</td>
<td>C 24</td>
<td>-1.467</td>
<td>-0.523</td>
<td>-4.958</td>
</tr>
<tr>
<td>C 15</td>
<td>-0.703</td>
<td>2.348</td>
<td>2.608</td>
<td>H 15</td>
<td>2.434</td>
<td>4.727</td>
<td>1.005</td>
<td>C 25</td>
<td>1.435</td>
<td>1.229</td>
<td>-5.013</td>
</tr>
<tr>
<td>C 16</td>
<td>-3.401</td>
<td>3.213</td>
<td>1.798</td>
<td>H 16</td>
<td>-0.854</td>
<td>3.805</td>
<td>1.021</td>
<td>C 26</td>
<td>2.251</td>
<td>1.444</td>
<td>-2.311</td>
</tr>
<tr>
<td>C 17</td>
<td>-2.503</td>
<td>2.399</td>
<td>0.864</td>
<td>H 17</td>
<td>-0.379</td>
<td>2.202</td>
<td>0.451</td>
<td>C 27</td>
<td>3.000</td>
<td>2.012</td>
<td>-3.334</td>
</tr>
<tr>
<td>C 18</td>
<td>-1.039</td>
<td>2.727</td>
<td>1.163</td>
<td>H 18</td>
<td>2.455</td>
<td>0.710</td>
<td>3.264</td>
<td>C 28</td>
<td>2.573</td>
<td>1.535</td>
<td>-1.272</td>
</tr>
<tr>
<td>C 19</td>
<td>-2.739</td>
<td>0.903</td>
<td>1.095</td>
<td>H 19</td>
<td>-0.039</td>
<td>-2.420</td>
<td>-0.378</td>
<td>C 29</td>
<td>3.918</td>
<td>2.552</td>
<td>-3.088</td>
</tr>
<tr>
<td>N 2</td>
<td>0.671</td>
<td>-0.843</td>
<td>2.794</td>
<td>H 20</td>
<td>-1.191</td>
<td>-3.771</td>
<td>-0.216</td>
<td>C 30</td>
<td>-2.843</td>
<td>-1.514</td>
<td>-3.225</td>
</tr>
<tr>
<td>C 3</td>
<td>-0.665</td>
<td>-2.077</td>
<td>4.493</td>
<td>H 21</td>
<td>0.529</td>
<td>-4.095</td>
<td>-0.544</td>
<td>C 31</td>
<td>-2.165</td>
<td>-1.330</td>
<td>-1.184</td>
</tr>
<tr>
<td>C 4</td>
<td>1.428</td>
<td>-0.950</td>
<td>5.205</td>
<td>H 22</td>
<td>5.132</td>
<td>-1.545</td>
<td>1.979</td>
<td>C 32</td>
<td>2.601</td>
<td>1.908</td>
<td>-6.479</td>
</tr>
<tr>
<td>C 5</td>
<td>0.105</td>
<td>-3.488</td>
<td>1.516</td>
<td>H 23</td>
<td>-4.380</td>
<td>1.111</td>
<td>3.229</td>
<td>C 33</td>
<td>1.121</td>
<td>1.150</td>
<td>-6.058</td>
</tr>
<tr>
<td>C 6</td>
<td>-0.131</td>
<td>-4.888</td>
<td>2.080</td>
<td>H 24</td>
<td>-3.188</td>
<td>1.089</td>
<td>4.524</td>
<td>C 34</td>
<td>3.211</td>
<td>2.366</td>
<td>-5.462</td>
</tr>
<tr>
<td>C 8</td>
<td>3.403</td>
<td>1.156</td>
<td>1.419</td>
<td>H 26</td>
<td>-2.728</td>
<td>2.645</td>
<td>-0.186</td>
<td>H 36</td>
<td>-1.279</td>
<td>-0.301</td>
<td>-6.013</td>
</tr>
<tr>
<td>C 9</td>
<td>4.555</td>
<td>0.531</td>
<td>3.581</td>
<td>H 27</td>
<td>-0.620</td>
<td>-2.810</td>
<td>1.987</td>
<td>H 37</td>
<td>-3.311</td>
<td>-1.572</td>
<td>-5.340</td>
</tr>
<tr>
<td>C 10</td>
<td>-0.165</td>
<td>-3.443</td>
<td>0.009</td>
<td>H 28</td>
<td>4.741</td>
<td>-3.860</td>
<td>1.196</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S3 S_1 – Perpendicular

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.079</td>
<td>-2.870</td>
<td>1.307</td>
<td>H</td>
<td>-1.522</td>
<td>-2.091</td>
<td>5.109</td>
<td>H</td>
<td>0.564</td>
<td>-4.834</td>
<td>3.229</td>
</tr>
<tr>
<td>C</td>
<td>2.858</td>
<td>-3.504</td>
<td>1.210</td>
<td>H</td>
<td>0.597</td>
<td>-3.153</td>
<td>4.050</td>
<td>H</td>
<td>1.077</td>
<td>-5.652</td>
<td>1.756</td>
</tr>
<tr>
<td>C</td>
<td>1.683</td>
<td>-2.887</td>
<td>1.633</td>
<td>H</td>
<td>-1.784</td>
<td>-2.033</td>
<td>3.360</td>
<td>H</td>
<td>-0.643</td>
<td>-5.421</td>
<td>2.076</td>
</tr>
<tr>
<td>C</td>
<td>1.749</td>
<td>-1.598</td>
<td>2.192</td>
<td>H</td>
<td>-1.167</td>
<td>2.800</td>
<td>4.809</td>
<td>H</td>
<td>4.116</td>
<td>-0.126</td>
<td>4.651</td>
</tr>
<tr>
<td>C</td>
<td>2.993</td>
<td>-0.935</td>
<td>2.269</td>
<td>H</td>
<td>1.067</td>
<td>4.217</td>
<td>3.777</td>
<td>H</td>
<td>4.205</td>
<td>1.607</td>
<td>4.297</td>
</tr>
<tr>
<td>C</td>
<td>4.136</td>
<td>-1.588</td>
<td>1.825</td>
<td>H</td>
<td>0.186</td>
<td>0.971</td>
<td>4.676</td>
<td>H</td>
<td>5.223</td>
<td>0.474</td>
<td>3.417</td>
</tr>
<tr>
<td>N</td>
<td>0.000</td>
<td>0.000</td>
<td>-1.922</td>
<td>H</td>
<td>-1.409</td>
<td>0.280</td>
<td>4.912</td>
<td>H</td>
<td>2.502</td>
<td>1.437</td>
<td>0.976</td>
</tr>
<tr>
<td>C</td>
<td>-0.082</td>
<td>0.003</td>
<td>1.883</td>
<td>H</td>
<td>0.502</td>
<td>2.472</td>
<td>2.975</td>
<td>H</td>
<td>4.265</td>
<td>1.226</td>
<td>1.109</td>
</tr>
<tr>
<td>C</td>
<td>-0.929</td>
<td>0.864</td>
<td>2.822</td>
<td>H</td>
<td>-2.768</td>
<td>-0.259</td>
<td>2.526</td>
<td>H</td>
<td>3.446</td>
<td>2.486</td>
<td>2.047</td>
</tr>
<tr>
<td>C</td>
<td>-0.566</td>
<td>0.317</td>
<td>4.222</td>
<td>H</td>
<td>1.898</td>
<td>-0.591</td>
<td>5.078</td>
<td>C</td>
<td>0.909</td>
<td>0.582</td>
<td>-2.759</td>
</tr>
<tr>
<td>C</td>
<td>0.052</td>
<td>-1.069</td>
<td>4.030</td>
<td>H</td>
<td>1.620</td>
<td>-2.325</td>
<td>4.854</td>
<td>C</td>
<td>0.555</td>
<td>0.406</td>
<td>-4.123</td>
</tr>
<tr>
<td>C</td>
<td>-2.456</td>
<td>0.790</td>
<td>2.510</td>
<td>H</td>
<td>-0.685</td>
<td>-4.126</td>
<td>6.053</td>
<td>C</td>
<td>-0.683</td>
<td>-0.351</td>
<td>-4.097</td>
</tr>
<tr>
<td>C</td>
<td>-3.279</td>
<td>1.585</td>
<td>3.528</td>
<td>H</td>
<td>-2.212</td>
<td>0.801</td>
<td>0.363</td>
<td>C</td>
<td>-0.960</td>
<td>-0.561</td>
<td>-2.721</td>
</tr>
<tr>
<td>Cu</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>H</td>
<td>-3.822</td>
<td>1.270</td>
<td>0.909</td>
<td>C</td>
<td>-2.098</td>
<td>-1.256</td>
<td>-2.313</td>
</tr>
<tr>
<td>C</td>
<td>-2.870</td>
<td>3.055</td>
<td>3.496</td>
<td>H</td>
<td>-2.870</td>
<td>4.688</td>
<td>2.076</td>
<td>C</td>
<td>-1.539</td>
<td>-0.839</td>
<td>-5.057</td>
</tr>
<tr>
<td>C</td>
<td>-1.375</td>
<td>3.165</td>
<td>3.798</td>
<td>H</td>
<td>-4.218</td>
<td>3.567</td>
<td>1.884</td>
<td>C</td>
<td>1.354</td>
<td>0.918</td>
<td>-5.117</td>
</tr>
<tr>
<td>C</td>
<td>-0.569</td>
<td>2.375</td>
<td>2.760</td>
<td>H</td>
<td>2.807</td>
<td>-4.503</td>
<td>0.789</td>
<td>C</td>
<td>2.070</td>
<td>1.268</td>
<td>-2.399</td>
</tr>
<tr>
<td>C</td>
<td>-3.147</td>
<td>3.628</td>
<td>2.108</td>
<td>H</td>
<td>-0.546</td>
<td>4.012</td>
<td>1.353</td>
<td>C</td>
<td>2.863</td>
<td>1.780</td>
<td>-3.413</td>
</tr>
<tr>
<td>C</td>
<td>-2.347</td>
<td>2.843</td>
<td>1.070</td>
<td>H</td>
<td>-0.266</td>
<td>2.431</td>
<td>0.626</td>
<td>H</td>
<td>2.336</td>
<td>1.386</td>
<td>-1.357</td>
</tr>
<tr>
<td>C</td>
<td>-0.856</td>
<td>2.960</td>
<td>1.383</td>
<td>H</td>
<td>2.179</td>
<td>0.737</td>
<td>3.272</td>
<td>H</td>
<td>3.769</td>
<td>2.318</td>
<td>-3.164</td>
</tr>
<tr>
<td>C</td>
<td>-2.752</td>
<td>1.372</td>
<td>1.127</td>
<td>H</td>
<td>0.082</td>
<td>-2.882</td>
<td>-0.593</td>
<td>C</td>
<td>-2.948</td>
<td>-1.744</td>
<td>-3.293</td>
</tr>
<tr>
<td>N</td>
<td>0.581</td>
<td>-0.940</td>
<td>2.661</td>
<td>H</td>
<td>-0.874</td>
<td>-4.321</td>
<td>-0.199</td>
<td>H</td>
<td>-2.301</td>
<td>-1.401</td>
<td>-1.260</td>
</tr>
<tr>
<td>C</td>
<td>-1.026</td>
<td>-2.154</td>
<td>4.137</td>
<td>H</td>
<td>0.855</td>
<td>-4.468</td>
<td>-0.526</td>
<td>H</td>
<td>-3.839</td>
<td>-2.289</td>
<td>-3.055</td>
</tr>
<tr>
<td>C</td>
<td>1.133</td>
<td>-1.368</td>
<td>5.058</td>
<td>H</td>
<td>5.095</td>
<td>-1.085</td>
<td>1.893</td>
<td>C</td>
<td>2.514</td>
<td>1.610</td>
<td>-4.750</td>
</tr>
<tr>
<td>C</td>
<td>0.376</td>
<td>-3.619</td>
<td>1.425</td>
<td>H</td>
<td>-4.345</td>
<td>1.489</td>
<td>3.286</td>
<td>H</td>
<td>1.103</td>
<td>0.794</td>
<td>-6.165</td>
</tr>
<tr>
<td>C</td>
<td>0.342</td>
<td>-4.954</td>
<td>2.167</td>
<td>H</td>
<td>-3.160</td>
<td>1.183</td>
<td>4.538</td>
<td>H</td>
<td>3.154</td>
<td>2.019</td>
<td>-5.523</td>
</tr>
<tr>
<td>C</td>
<td>3.128</td>
<td>0.475</td>
<td>2.803</td>
<td>H</td>
<td>-3.440</td>
<td>3.614</td>
<td>4.247</td>
<td>C</td>
<td>-2.676</td>
<td>-1.541</td>
<td>-4.643</td>
</tr>
<tr>
<td>C</td>
<td>3.352</td>
<td>1.466</td>
<td>1.662</td>
<td>H</td>
<td>-2.549</td>
<td>3.243</td>
<td>0.070</td>
<td>H</td>
<td>-1.347</td>
<td>-0.689</td>
<td>-6.113</td>
</tr>
<tr>
<td>C</td>
<td>4.230</td>
<td>0.609</td>
<td>3.851</td>
<td>H</td>
<td>-0.418</td>
<td>-2.982</td>
<td>1.814</td>
<td>H</td>
<td>-3.360</td>
<td>-1.931</td>
<td>-5.387</td>
</tr>
<tr>
<td>C</td>
<td>0.096</td>
<td>-3.835</td>
<td>-0.060</td>
<td>H</td>
<td>4.984</td>
<td>-3.368</td>
<td>0.976</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S7: Cartesian coordinates of the S_1 perpendicular minimum of Cu-Cz.
S4 T_1 – Co-planar

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.892</td>
<td>-2.401</td>
<td>-4.644</td>
<td>C</td>
<td>-3.827</td>
<td>-2.521</td>
<td>0.820</td>
<td>H</td>
<td>2.113</td>
<td>0.762</td>
<td>0.676</td>
</tr>
<tr>
<td>C</td>
<td>-1.024</td>
<td>-1.369</td>
<td>-5.046</td>
<td>C</td>
<td>-3.394</td>
<td>-3.806</td>
<td>0.520</td>
<td>H</td>
<td>0.658</td>
<td>-2.999</td>
<td>2.426</td>
</tr>
<tr>
<td>C</td>
<td>-0.394</td>
<td>-0.619</td>
<td>-4.069</td>
<td>C</td>
<td>-2.095</td>
<td>-4.184</td>
<td>0.844</td>
<td>H</td>
<td>-2.483</td>
<td>0.542</td>
<td>-0.108</td>
</tr>
<tr>
<td>C</td>
<td>-0.630</td>
<td>-0.901</td>
<td>-2.690</td>
<td>C</td>
<td>-1.229</td>
<td>-3.309</td>
<td>1.510</td>
<td>H</td>
<td>-3.786</td>
<td>1.608</td>
<td>0.473</td>
</tr>
<tr>
<td>C</td>
<td>-1.496</td>
<td>-1.931</td>
<td>-2.293</td>
<td>C</td>
<td>-3.480</td>
<td>-0.184</td>
<td>1.678</td>
<td>H</td>
<td>-4.192</td>
<td>0.095</td>
<td>-0.377</td>
</tr>
<tr>
<td>C</td>
<td>-2.122</td>
<td>-2.673</td>
<td>-3.291</td>
<td>C</td>
<td>-3.490</td>
<td>0.555</td>
<td>0.338</td>
<td>H</td>
<td>-1.741</td>
<td>-5.181</td>
<td>0.571</td>
</tr>
<tr>
<td>N</td>
<td>0.076</td>
<td>-0.061</td>
<td>-1.875</td>
<td>C</td>
<td>0.215</td>
<td>-3.725</td>
<td>1.730</td>
<td>H</td>
<td>0.702</td>
<td>3.703</td>
<td>4.435</td>
</tr>
<tr>
<td>C</td>
<td>0.777</td>
<td>0.783</td>
<td>-2.691</td>
<td>C</td>
<td>0.363</td>
<td>-5.122</td>
<td>2.329</td>
<td>H</td>
<td>0.842</td>
<td>2.187</td>
<td>5.325</td>
</tr>
<tr>
<td>C</td>
<td>0.540</td>
<td>0.498</td>
<td>-4.070</td>
<td>C</td>
<td>-2.022</td>
<td>-0.355</td>
<td>4.700</td>
<td>H</td>
<td>3.096</td>
<td>3.140</td>
<td>4.934</td>
</tr>
<tr>
<td>C</td>
<td>1.166</td>
<td>1.246</td>
<td>-5.051</td>
<td>C</td>
<td>-0.823</td>
<td>-2.514</td>
<td>4.736</td>
<td>H</td>
<td>2.339</td>
<td>3.272</td>
<td>0.702</td>
</tr>
<tr>
<td>C</td>
<td>2.031</td>
<td>2.282</td>
<td>-4.657</td>
<td>C</td>
<td>-4.845</td>
<td>-0.096</td>
<td>2.359</td>
<td>H</td>
<td>-2.740</td>
<td>0.324</td>
<td>2.309</td>
</tr>
<tr>
<td>C</td>
<td>2.260</td>
<td>2.563</td>
<td>-3.306</td>
<td>C</td>
<td>1.000</td>
<td>-3.598</td>
<td>0.422</td>
<td>H</td>
<td>-4.062</td>
<td>-4.509</td>
<td>0.015</td>
</tr>
<tr>
<td>C</td>
<td>1.639</td>
<td>1.820</td>
<td>-2.305</td>
<td>H</td>
<td>-1.920</td>
<td>-0.291</td>
<td>5.795</td>
<td>H</td>
<td>-4.860</td>
<td>-0.633</td>
<td>3.319</td>
</tr>
<tr>
<td>Cu</td>
<td>0.057</td>
<td>-0.144</td>
<td>0.080</td>
<td>H</td>
<td>-2.968</td>
<td>-0.874</td>
<td>4.486</td>
<td>H</td>
<td>-5.645</td>
<td>-0.519</td>
<td>1.731</td>
</tr>
<tr>
<td>C</td>
<td>0.017</td>
<td>-0.286</td>
<td>1.987</td>
<td>H</td>
<td>-2.092</td>
<td>0.670</td>
<td>4.310</td>
<td>H</td>
<td>-5.109</td>
<td>0.955</td>
<td>2.555</td>
</tr>
<tr>
<td>N</td>
<td>-0.862</td>
<td>-1.159</td>
<td>2.630</td>
<td>H</td>
<td>2.887</td>
<td>0.655</td>
<td>4.907</td>
<td>H</td>
<td>-0.216</td>
<td>-5.234</td>
<td>3.259</td>
</tr>
<tr>
<td>C</td>
<td>-0.833</td>
<td>-1.121</td>
<td>4.105</td>
<td>H</td>
<td>4.139</td>
<td>1.181</td>
<td>3.778</td>
<td>H</td>
<td>1.420</td>
<td>-5.328</td>
<td>2.561</td>
</tr>
<tr>
<td>C</td>
<td>0.495</td>
<td>-0.384</td>
<td>4.333</td>
<td>H</td>
<td>1.298</td>
<td>-1.132</td>
<td>4.440</td>
<td>H</td>
<td>0.029</td>
<td>-5.907</td>
<td>1.632</td>
</tr>
<tr>
<td>C</td>
<td>0.787</td>
<td>0.459</td>
<td>3.070</td>
<td>H</td>
<td>0.475</td>
<td>0.195</td>
<td>5.267</td>
<td>H</td>
<td>0.944</td>
<td>-2.560</td>
<td>0.056</td>
</tr>
<tr>
<td>C</td>
<td>2.317</td>
<td>0.511</td>
<td>2.804</td>
<td>H</td>
<td>2.672</td>
<td>-0.529</td>
<td>2.699</td>
<td>H</td>
<td>0.600</td>
<td>-4.268</td>
<td>-0.357</td>
</tr>
<tr>
<td>C</td>
<td>3.050</td>
<td>1.200</td>
<td>3.963</td>
<td>H</td>
<td>-0.757</td>
<td>1.979</td>
<td>3.388</td>
<td>H</td>
<td>2.062</td>
<td>-3.847</td>
<td>0.575</td>
</tr>
<tr>
<td>C</td>
<td>2.571</td>
<td>2.650</td>
<td>4.095</td>
<td>H</td>
<td>0.052</td>
<td>-3.098</td>
<td>4.423</td>
<td>H</td>
<td>1.807</td>
<td>2.030</td>
<td>-1.249</td>
</tr>
<tr>
<td>C</td>
<td>0.331</td>
<td>1.952</td>
<td>3.208</td>
<td>H</td>
<td>-0.792</td>
<td>-2.426</td>
<td>5.833</td>
<td>H</td>
<td>-1.667</td>
<td>-2.134</td>
<td>-1.235</td>
</tr>
<tr>
<td>C</td>
<td>2.621</td>
<td>1.274</td>
<td>1.514</td>
<td>H</td>
<td>0.095</td>
<td>2.221</td>
<td>1.075</td>
<td>H</td>
<td>-2.801</td>
<td>-3.481</td>
<td>-3.010</td>
</tr>
<tr>
<td>C</td>
<td>2.133</td>
<td>2.721</td>
<td>1.637</td>
<td>H</td>
<td>0.245</td>
<td>3.744</td>
<td>1.984</td>
<td>H</td>
<td>0.999</td>
<td>1.043</td>
<td>-6.111</td>
</tr>
<tr>
<td>C</td>
<td>0.627</td>
<td>2.711</td>
<td>1.909</td>
<td>H</td>
<td>3.953</td>
<td>3.419</td>
<td>2.603</td>
<td>H</td>
<td>2.532</td>
<td>2.879</td>
<td>-5.422</td>
</tr>
<tr>
<td>C</td>
<td>2.866</td>
<td>3.404</td>
<td>2.795</td>
<td>H</td>
<td>2.541</td>
<td>4.455</td>
<td>2.885</td>
<td>H</td>
<td>-0.858</td>
<td>-1.172</td>
<td>-6.108</td>
</tr>
<tr>
<td>C</td>
<td>-1.703</td>
<td>-2.027</td>
<td>1.885</td>
<td>H</td>
<td>-4.832</td>
<td>-2.208</td>
<td>0.526</td>
<td>H</td>
<td>-2.396</td>
<td>-3.000</td>
<td>-5.406</td>
</tr>
<tr>
<td>C</td>
<td>-2.996</td>
<td>-1.611</td>
<td>1.486</td>
<td>H</td>
<td>3.704</td>
<td>1.246</td>
<td>1.303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S8: Cartesian coordinates of the T_1 co-planar minimum of Cu-Cz.
<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.966</td>
<td>-3.122</td>
<td>1.361</td>
<td>H</td>
<td>-1.232</td>
<td>-1.990</td>
<td>5.447</td>
<td>H</td>
<td>0.324</td>
<td>-4.970</td>
<td>3.225</td>
</tr>
<tr>
<td>C</td>
<td>2.693</td>
<td>-3.672</td>
<td>1.311</td>
<td>H</td>
<td>-0.338</td>
<td>-3.062</td>
<td>4.349</td>
<td>H</td>
<td>0.704</td>
<td>-5.693</td>
<td>1.649</td>
</tr>
<tr>
<td>C</td>
<td>1.572</td>
<td>-2.956</td>
<td>1.749</td>
<td>H</td>
<td>-1.651</td>
<td>-2.035</td>
<td>3.718</td>
<td>H</td>
<td>-0.979</td>
<td>-5.319</td>
<td>2.064</td>
</tr>
<tr>
<td>C</td>
<td>1.752</td>
<td>-1.656</td>
<td>2.276</td>
<td>H</td>
<td>-1.265</td>
<td>2.969</td>
<td>4.651</td>
<td>H</td>
<td>4.393</td>
<td>-0.089</td>
<td>4.517</td>
</tr>
<tr>
<td>C</td>
<td>4.131</td>
<td>-1.823</td>
<td>1.830</td>
<td>H</td>
<td>0.273</td>
<td>1.159</td>
<td>4.640</td>
<td>H</td>
<td>5.414</td>
<td>0.336</td>
<td>3.128</td>
</tr>
<tr>
<td>N</td>
<td>0.142</td>
<td>0.083</td>
<td>-1.907</td>
<td>H</td>
<td>-1.286</td>
<td>0.422</td>
<td>5.025</td>
<td>H</td>
<td>2.454</td>
<td>1.161</td>
<td>0.865</td>
</tr>
<tr>
<td>C</td>
<td>-0.056</td>
<td>-0.029</td>
<td>1.955</td>
<td>H</td>
<td>0.381</td>
<td>2.561</td>
<td>2.794</td>
<td>H</td>
<td>4.244</td>
<td>1.005</td>
<td>0.848</td>
</tr>
<tr>
<td>C</td>
<td>-0.932</td>
<td>0.838</td>
<td>2.859</td>
<td>H</td>
<td>-2.694</td>
<td>-0.452</td>
<td>2.767</td>
<td>H</td>
<td>3.467</td>
<td>2.330</td>
<td>1.758</td>
</tr>
<tr>
<td>C</td>
<td>-0.476</td>
<td>0.432</td>
<td>4.282</td>
<td>H</td>
<td>2.077</td>
<td>-0.301</td>
<td>5.091</td>
<td>C</td>
<td>1.062</td>
<td>0.689</td>
<td>-2.717</td>
</tr>
<tr>
<td>C</td>
<td>0.196</td>
<td>-0.946</td>
<td>4.176</td>
<td>H</td>
<td>1.864</td>
<td>-2.067</td>
<td>5.031</td>
<td>C</td>
<td>0.700</td>
<td>0.587</td>
<td>-4.095</td>
</tr>
<tr>
<td>C</td>
<td>-2.461</td>
<td>0.617</td>
<td>2.624</td>
<td>H</td>
<td>0.940</td>
<td>-1.097</td>
<td>6.200</td>
<td>C</td>
<td>-0.556</td>
<td>-0.150</td>
<td>-4.101</td>
</tr>
<tr>
<td>C</td>
<td>-3.314</td>
<td>1.460</td>
<td>3.581</td>
<td>H</td>
<td>-2.229</td>
<td>0.404</td>
<td>0.490</td>
<td>C</td>
<td>-0.831</td>
<td>-0.421</td>
<td>-2.728</td>
</tr>
<tr>
<td>Cu</td>
<td>0.111</td>
<td>0.011</td>
<td>0.054</td>
<td>H</td>
<td>-3.894</td>
<td>0.782</td>
<td>0.997</td>
<td>C</td>
<td>-1.986</td>
<td>-1.120</td>
<td>-2.348</td>
</tr>
<tr>
<td>C</td>
<td>-3.023</td>
<td>2.948</td>
<td>3.369</td>
<td>H</td>
<td>-3.201</td>
<td>4.410</td>
<td>1.768</td>
<td>C</td>
<td>-1.432</td>
<td>0.576</td>
<td>-5.084</td>
</tr>
<tr>
<td>C</td>
<td>-0.693</td>
<td>2.362</td>
<td>2.631</td>
<td>H</td>
<td>2.558</td>
<td>-4.681</td>
<td>0.910</td>
<td>C</td>
<td>2.236</td>
<td>1.351</td>
<td>-2.328</td>
</tr>
<tr>
<td>C</td>
<td>-3.387</td>
<td>3.334</td>
<td>1.933</td>
<td>H</td>
<td>-0.839</td>
<td>3.837</td>
<td>1.047</td>
<td>C</td>
<td>3.036</td>
<td>1.908</td>
<td>-3.322</td>
</tr>
<tr>
<td>C</td>
<td>-2.553</td>
<td>2.498</td>
<td>0.958</td>
<td>H</td>
<td>-0.447</td>
<td>2.197</td>
<td>0.491</td>
<td>H</td>
<td>2.507</td>
<td>1.419</td>
<td>-1.274</td>
</tr>
<tr>
<td>C</td>
<td>-1.067</td>
<td>2.768</td>
<td>1.205</td>
<td>H</td>
<td>2.359</td>
<td>0.694</td>
<td>3.235</td>
<td>H</td>
<td>3.955</td>
<td>2.429</td>
<td>-3.044</td>
</tr>
<tr>
<td>C</td>
<td>-2.831</td>
<td>1.009</td>
<td>1.190</td>
<td>H</td>
<td>-0.136</td>
<td>-2.533</td>
<td>-0.319</td>
<td>C</td>
<td>-2.857</td>
<td>-1.542</td>
<td>-3.349</td>
</tr>
<tr>
<td>N</td>
<td>0.652</td>
<td>-0.911</td>
<td>2.775</td>
<td>H</td>
<td>-1.182</td>
<td>-3.962</td>
<td>-0.091</td>
<td>H</td>
<td>-2.186</td>
<td>-1.320</td>
<td>-1.295</td>
</tr>
<tr>
<td>C</td>
<td>-0.816</td>
<td>-2.074</td>
<td>4.431</td>
<td>H</td>
<td>0.533</td>
<td>-4.175</td>
<td>-0.528</td>
<td>H</td>
<td>-3.763</td>
<td>-2.088</td>
<td>-3.079</td>
</tr>
<tr>
<td>C</td>
<td>1.339</td>
<td>-1.110</td>
<td>5.175</td>
<td>H</td>
<td>5.131</td>
<td>-1.381</td>
<td>1.845</td>
<td>C</td>
<td>2.681</td>
<td>1.808</td>
<td>-4.671</td>
</tr>
<tr>
<td>C</td>
<td>0.195</td>
<td>-3.563</td>
<td>1.551</td>
<td>H</td>
<td>-4.384</td>
<td>1.255</td>
<td>3.397</td>
<td>H</td>
<td>1.246</td>
<td>1.077</td>
<td>-6.129</td>
</tr>
<tr>
<td>C</td>
<td>0.058</td>
<td>-4.959</td>
<td>2.157</td>
<td>H</td>
<td>-3.127</td>
<td>1.182</td>
<td>4.631</td>
<td>H</td>
<td>3.327</td>
<td>2.253</td>
<td>-5.431</td>
</tr>
<tr>
<td>C</td>
<td>3.263</td>
<td>0.373</td>
<td>2.700</td>
<td>H</td>
<td>-3.619</td>
<td>3.549</td>
<td>4.077</td>
<td>C</td>
<td>-2.587</td>
<td>-1.276</td>
<td>-4.696</td>
</tr>
<tr>
<td>C</td>
<td>3.370</td>
<td>1.271</td>
<td>1.467</td>
<td>H</td>
<td>-2.815</td>
<td>2.768</td>
<td>-0.079</td>
<td>H</td>
<td>-1.239</td>
<td>-0.375</td>
<td>-6.141</td>
</tr>
<tr>
<td>C</td>
<td>4.460</td>
<td>0.560</td>
<td>3.631</td>
<td>H</td>
<td>-0.526</td>
<td>-2.899</td>
<td>2.044</td>
<td>H</td>
<td>-3.288</td>
<td>-1.616</td>
<td>-5.461</td>
</tr>
<tr>
<td>C</td>
<td>-0.166</td>
<td>-3.564</td>
<td>0.065</td>
<td>H</td>
<td>4.830</td>
<td>-3.699</td>
<td>1.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S9: Cartesian coordinates of the T_1 perpendicular minimum of Cu-Cz.
Table S10: Cartesian coordinates of the T\textsubscript{1} co-planar minimum of Cu-Cz.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1.967</td>
<td>-2.287</td>
<td>-4.509</td>
<td>C</td>
<td>-3.837</td>
<td>-2.545</td>
<td>0.853</td>
<td>H</td>
<td>1.978</td>
<td>0.641</td>
<td>0.653</td>
</tr>
<tr>
<td>C</td>
<td>-1.069</td>
<td>-1.299</td>
<td>-4.894</td>
<td>C</td>
<td>-3.395</td>
<td>-3.825</td>
<td>0.542</td>
<td>H</td>
<td>0.675</td>
<td>-3.008</td>
<td>2.411</td>
</tr>
<tr>
<td>C</td>
<td>-0.394</td>
<td>-0.567</td>
<td>-3.909</td>
<td>C</td>
<td>-2.089</td>
<td>-4.196</td>
<td>0.841</td>
<td>H</td>
<td>-2.252</td>
<td>0.496</td>
<td>0.005</td>
</tr>
<tr>
<td>C</td>
<td>-0.629</td>
<td>-0.837</td>
<td>-2.532</td>
<td>C</td>
<td>-1.223</td>
<td>-3.324</td>
<td>1.508</td>
<td>H</td>
<td>-3.556</td>
<td>1.614</td>
<td>0.467</td>
</tr>
<tr>
<td>C</td>
<td>-1.537</td>
<td>-1.837</td>
<td>-2.152</td>
<td>C</td>
<td>-3.465</td>
<td>-0.196</td>
<td>1.686</td>
<td>H</td>
<td>-3.924</td>
<td>0.120</td>
<td>-0.438</td>
</tr>
<tr>
<td>C</td>
<td>-2.195</td>
<td>-2.551</td>
<td>-3.146</td>
<td>C</td>
<td>-3.297</td>
<td>0.549</td>
<td>0.358</td>
<td>H</td>
<td>-1.728</td>
<td>-5.181</td>
<td>0.536</td>
</tr>
<tr>
<td>N</td>
<td>0.127</td>
<td>-0.015</td>
<td>-1.725</td>
<td>C</td>
<td>0.239</td>
<td>-3.699</td>
<td>1.675</td>
<td>H</td>
<td>0.683</td>
<td>3.735</td>
<td>4.359</td>
</tr>
<tr>
<td>C</td>
<td>0.857</td>
<td>0.794</td>
<td>-2.567</td>
<td>C</td>
<td>0.454</td>
<td>-5.125</td>
<td>2.179</td>
<td>H</td>
<td>0.876</td>
<td>2.253</td>
<td>5.295</td>
</tr>
<tr>
<td>C</td>
<td>0.577</td>
<td>0.496</td>
<td>-3.933</td>
<td>C</td>
<td>-2.055</td>
<td>-0.440</td>
<td>4.756</td>
<td>H</td>
<td>3.101</td>
<td>3.225</td>
<td>4.771</td>
</tr>
<tr>
<td>C</td>
<td>1.219</td>
<td>1.202</td>
<td>-4.957</td>
<td>C</td>
<td>-0.782</td>
<td>-2.566</td>
<td>4.768</td>
<td>H</td>
<td>2.172</td>
<td>3.150</td>
<td>0.571</td>
</tr>
<tr>
<td>C</td>
<td>2.133</td>
<td>2.195</td>
<td>-4.628</td>
<td>C</td>
<td>-4.889</td>
<td>-0.057</td>
<td>2.218</td>
<td>H</td>
<td>-2.787</td>
<td>0.283</td>
<td>2.403</td>
</tr>
<tr>
<td>C</td>
<td>2.407</td>
<td>2.488</td>
<td>-3.281</td>
<td>C</td>
<td>0.982</td>
<td>-3.460</td>
<td>0.358</td>
<td>H</td>
<td>-4.058</td>
<td>-4.524</td>
<td>0.027</td>
</tr>
<tr>
<td>C</td>
<td>1.781</td>
<td>1.800</td>
<td>-2.249</td>
<td>H</td>
<td>-1.969</td>
<td>-0.409</td>
<td>5.854</td>
<td>H</td>
<td>-5.026</td>
<td>-0.592</td>
<td>3.170</td>
</tr>
<tr>
<td>Cu</td>
<td>0.075</td>
<td>-0.133</td>
<td>0.197</td>
<td>H</td>
<td>-2.988</td>
<td>-0.968</td>
<td>4.509</td>
<td>H</td>
<td>-5.634</td>
<td>-0.445</td>
<td>1.506</td>
</tr>
<tr>
<td>C</td>
<td>-0.021</td>
<td>-0.320</td>
<td>2.084</td>
<td>H</td>
<td>-2.134</td>
<td>0.595</td>
<td>4.397</td>
<td>H</td>
<td>-5.131</td>
<td>1.004</td>
<td>2.389</td>
</tr>
<tr>
<td>N</td>
<td>-0.887</td>
<td>-1.200</td>
<td>2.683</td>
<td>H</td>
<td>2.925</td>
<td>0.734</td>
<td>4.867</td>
<td>H</td>
<td>-0.091</td>
<td>-5.313</td>
<td>3.117</td>
</tr>
<tr>
<td>C</td>
<td>-0.842</td>
<td>-1.166</td>
<td>4.162</td>
<td>H</td>
<td>4.124</td>
<td>1.224</td>
<td>3.667</td>
<td>H</td>
<td>1.524</td>
<td>-5.306</td>
<td>2.365</td>
</tr>
<tr>
<td>C</td>
<td>0.467</td>
<td>-0.382</td>
<td>4.390</td>
<td>H</td>
<td>1.291</td>
<td>-1.102</td>
<td>4.525</td>
<td>H</td>
<td>0.125</td>
<td>-5.876</td>
<td>1.444</td>
</tr>
<tr>
<td>C</td>
<td>0.760</td>
<td>0.454</td>
<td>3.121</td>
<td>H</td>
<td>0.414</td>
<td>0.223</td>
<td>5.306</td>
<td>H</td>
<td>0.892</td>
<td>-2.406</td>
<td>0.041</td>
</tr>
<tr>
<td>C</td>
<td>2.274</td>
<td>0.494</td>
<td>2.801</td>
<td>H</td>
<td>2.633</td>
<td>-0.547</td>
<td>2.733</td>
<td>H</td>
<td>0.579</td>
<td>-4.077</td>
<td>-0.460</td>
</tr>
<tr>
<td>C</td>
<td>3.045</td>
<td>1.243</td>
<td>3.896</td>
<td>H</td>
<td>-0.796</td>
<td>1.953</td>
<td>3.442</td>
<td>H</td>
<td>2.056</td>
<td>-3.683</td>
<td>0.464</td>
</tr>
<tr>
<td>C</td>
<td>2.550</td>
<td>2.690</td>
<td>3.979</td>
<td>H</td>
<td>0.100</td>
<td>-3.123</td>
<td>4.424</td>
<td>H</td>
<td>2.004</td>
<td>2.046</td>
<td>-1.209</td>
</tr>
<tr>
<td>C</td>
<td>1.054</td>
<td>2.697</td>
<td>4.301</td>
<td>H</td>
<td>-1.681</td>
<td>-3.149</td>
<td>4.514</td>
<td>H</td>
<td>3.128</td>
<td>3.274</td>
<td>-3.039</td>
</tr>
<tr>
<td>C</td>
<td>0.283</td>
<td>1.937</td>
<td>3.214</td>
<td>H</td>
<td>-0.730</td>
<td>-2.495</td>
<td>5.865</td>
<td>H</td>
<td>-1.724</td>
<td>-2.055</td>
<td>-1.098</td>
</tr>
<tr>
<td>C</td>
<td>2.505</td>
<td>1.198</td>
<td>1.465</td>
<td>H</td>
<td>-0.048</td>
<td>2.119</td>
<td>1.071</td>
<td>H</td>
<td>-2.903</td>
<td>-3.333</td>
<td>-2.860</td>
</tr>
<tr>
<td>C</td>
<td>2.009</td>
<td>2.643</td>
<td>1.536</td>
<td>H</td>
<td>0.126</td>
<td>3.667</td>
<td>1.905</td>
<td>H</td>
<td>1.003</td>
<td>0.973</td>
<td>-6.004</td>
</tr>
<tr>
<td>C</td>
<td>0.519</td>
<td>2.637</td>
<td>1.873</td>
<td>H</td>
<td>3.861</td>
<td>3.396</td>
<td>2.393</td>
<td>H</td>
<td>2.643</td>
<td>2.754</td>
<td>-5.417</td>
</tr>
<tr>
<td>C</td>
<td>2.784</td>
<td>3.381</td>
<td>2.634</td>
<td>H</td>
<td>2.455</td>
<td>4.433</td>
<td>2.683</td>
<td>H</td>
<td>-0.892</td>
<td>-1.094</td>
<td>-5.953</td>
</tr>
<tr>
<td>C</td>
<td>-1.718</td>
<td>-2.059</td>
<td>1.911</td>
<td>H</td>
<td>-4.842</td>
<td>-2.237</td>
<td>0.555</td>
<td>H</td>
<td>-2.501</td>
<td>-2.865</td>
<td>-5.267</td>
</tr>
<tr>
<td>C</td>
<td>-3.010</td>
<td>-1.635</td>
<td>1.520</td>
<td>H</td>
<td>3.571</td>
<td>1.160</td>
<td>1.183</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table S11: Cartesian coordinates of the T₁ perpendicular minimum of Cu-Cz.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.985</td>
<td>-3.091</td>
<td>1.316</td>
<td>H</td>
<td>-1.207</td>
<td>-2.023</td>
<td>5.475</td>
<td>H</td>
<td>0.334</td>
<td>-5.011</td>
<td>3.084</td>
</tr>
<tr>
<td>C</td>
<td>2.707</td>
<td>-3.628</td>
<td>1.242</td>
<td>H</td>
<td>-0.291</td>
<td>-3.069</td>
<td>4.368</td>
<td>H</td>
<td>0.706</td>
<td>-5.640</td>
<td>1.465</td>
</tr>
<tr>
<td>C</td>
<td>1.595</td>
<td>-2.926</td>
<td>1.720</td>
<td>H</td>
<td>-1.619</td>
<td>-2.055</td>
<td>3.745</td>
<td>H</td>
<td>-0.973</td>
<td>-5.281</td>
<td>1.904</td>
</tr>
<tr>
<td>C</td>
<td>1.799</td>
<td>-1.657</td>
<td>2.309</td>
<td>H</td>
<td>-1.296</td>
<td>3.054</td>
<td>4.535</td>
<td>H</td>
<td>4.450</td>
<td>-0.182</td>
<td>4.603</td>
</tr>
<tr>
<td>C</td>
<td>3.092</td>
<td>-1.077</td>
<td>2.337</td>
<td>H</td>
<td>-1.256</td>
<td>4.293</td>
<td>3.279</td>
<td>H</td>
<td>4.585</td>
<td>1.528</td>
<td>4.120</td>
</tr>
<tr>
<td>C</td>
<td>4.169</td>
<td>-1.819</td>
<td>1.846</td>
<td>H</td>
<td>0.227</td>
<td>1.172</td>
<td>4.698</td>
<td>H</td>
<td>5.471</td>
<td>0.284</td>
<td>3.226</td>
</tr>
<tr>
<td>N</td>
<td>-0.028</td>
<td>0.101</td>
<td>-1.764</td>
<td>H</td>
<td>-1.332</td>
<td>0.400</td>
<td>5.016</td>
<td>H</td>
<td>2.530</td>
<td>1.216</td>
<td>0.978</td>
</tr>
<tr>
<td>C</td>
<td>-0.025</td>
<td>-0.065</td>
<td>2.041</td>
<td>H</td>
<td>0.436</td>
<td>2.526</td>
<td>2.800</td>
<td>H</td>
<td>4.302</td>
<td>1.034</td>
<td>0.968</td>
</tr>
<tr>
<td>C</td>
<td>-0.913</td>
<td>0.835</td>
<td>2.876</td>
<td>H</td>
<td>-2.671</td>
<td>-0.452</td>
<td>2.778</td>
<td>H</td>
<td>3.544</td>
<td>2.334</td>
<td>1.925</td>
</tr>
<tr>
<td>C</td>
<td>-0.489</td>
<td>0.428</td>
<td>4.311</td>
<td>H</td>
<td>2.062</td>
<td>-0.261</td>
<td>5.179</td>
<td>C</td>
<td>0.905</td>
<td>0.717</td>
<td>-2.569</td>
</tr>
<tr>
<td>C</td>
<td>0.211</td>
<td>-0.946</td>
<td>4.231</td>
<td>H</td>
<td>1.887</td>
<td>-2.032</td>
<td>5.103</td>
<td>C</td>
<td>0.560</td>
<td>0.591</td>
<td>-3.944</td>
</tr>
<tr>
<td>C</td>
<td>-2.424</td>
<td>0.604</td>
<td>2.580</td>
<td>H</td>
<td>0.923</td>
<td>-1.091</td>
<td>6.262</td>
<td>C</td>
<td>-0.672</td>
<td>-0.157</td>
<td>-3.968</td>
</tr>
<tr>
<td>C</td>
<td>-3.307</td>
<td>1.510</td>
<td>3.449</td>
<td>H</td>
<td>-2.105</td>
<td>0.254</td>
<td>0.456</td>
<td>C</td>
<td>-0.983</td>
<td>-0.429</td>
<td>-2.604</td>
</tr>
<tr>
<td>Cu</td>
<td>0.025</td>
<td>-0.017</td>
<td>0.150</td>
<td>H</td>
<td>-3.759</td>
<td>0.688</td>
<td>0.860</td>
<td>C</td>
<td>-2.144</td>
<td>-1.148</td>
<td>-2.278</td>
</tr>
<tr>
<td>C</td>
<td>-2.985</td>
<td>2.978</td>
<td>3.164</td>
<td>H</td>
<td>-3.058</td>
<td>4.343</td>
<td>1.469</td>
<td>C</td>
<td>-1.522</td>
<td>-0.603</td>
<td>-4.986</td>
</tr>
<tr>
<td>C</td>
<td>-0.629</td>
<td>2.334</td>
<td>2.588</td>
<td>H</td>
<td>2.562</td>
<td>-4.611</td>
<td>0.788</td>
<td>C</td>
<td>2.065</td>
<td>1.411</td>
<td>-2.195</td>
</tr>
<tr>
<td>C</td>
<td>-3.266</td>
<td>3.283</td>
<td>1.690</td>
<td>H</td>
<td>-0.665</td>
<td>3.703</td>
<td>0.896</td>
<td>C</td>
<td>2.863</td>
<td>1.962</td>
<td>-3.190</td>
</tr>
<tr>
<td>C</td>
<td>-2.394</td>
<td>2.382</td>
<td>0.806</td>
<td>H</td>
<td>-0.267</td>
<td>2.055</td>
<td>0.447</td>
<td>H</td>
<td>2.342</td>
<td>1.518</td>
<td>-1.143</td>
</tr>
<tr>
<td>C</td>
<td>-0.924</td>
<td>2.654</td>
<td>1.121</td>
<td>H</td>
<td>2.422</td>
<td>0.660</td>
<td>3.355</td>
<td>H</td>
<td>3.770</td>
<td>2.504</td>
<td>-2.909</td>
</tr>
<tr>
<td>C</td>
<td>-2.711</td>
<td>0.919</td>
<td>1.111</td>
<td>H</td>
<td>-0.140</td>
<td>-2.368</td>
<td>-0.333</td>
<td>C</td>
<td>-2.972</td>
<td>-1.581</td>
<td>-3.307</td>
</tr>
<tr>
<td>N</td>
<td>0.703</td>
<td>-0.917</td>
<td>2.835</td>
<td>H</td>
<td>-1.192</td>
<td>-3.788</td>
<td>-0.149</td>
<td>H</td>
<td>-2.397</td>
<td>-1.366</td>
<td>-1.237</td>
</tr>
<tr>
<td>C</td>
<td>-0.785</td>
<td>-2.090</td>
<td>4.460</td>
<td>H</td>
<td>0.514</td>
<td>-3.989</td>
<td>-0.621</td>
<td>H</td>
<td>-3.879</td>
<td>-2.142</td>
<td>-3.062</td>
</tr>
<tr>
<td>C</td>
<td>1.341</td>
<td>-1.087</td>
<td>5.244</td>
<td>H</td>
<td>5.172</td>
<td>-1.387</td>
<td>1.868</td>
<td>C</td>
<td>2.528</td>
<td>1.837</td>
<td>-4.550</td>
</tr>
<tr>
<td>C</td>
<td>0.210</td>
<td>-3.505</td>
<td>1.500</td>
<td>H</td>
<td>-4.369</td>
<td>1.303</td>
<td>3.232</td>
<td>H</td>
<td>1.116</td>
<td>1.058</td>
<td>-5.987</td>
</tr>
<tr>
<td>C</td>
<td>0.066</td>
<td>-4.935</td>
<td>2.019</td>
<td>H</td>
<td>-3.166</td>
<td>1.288</td>
<td>4.519</td>
<td>H</td>
<td>3.176</td>
<td>2.281</td>
<td>-5.309</td>
</tr>
<tr>
<td>C</td>
<td>3.321</td>
<td>0.350</td>
<td>2.804</td>
<td>H</td>
<td>-3.612</td>
<td>3.626</td>
<td>3.801</td>
<td>C</td>
<td>-2.669</td>
<td>-1.314</td>
<td>-4.653</td>
</tr>
<tr>
<td>C</td>
<td>3.435</td>
<td>1.287</td>
<td>1.600</td>
<td>H</td>
<td>-2.593</td>
<td>2.593</td>
<td>-0.257</td>
<td>H</td>
<td>-1.286</td>
<td>-0.393</td>
<td>-6.033</td>
</tr>
<tr>
<td>C</td>
<td>4.520</td>
<td>0.497</td>
<td>3.739</td>
<td>H</td>
<td>-0.502</td>
<td>-2.874</td>
<td>2.048</td>
<td>H</td>
<td>-3.341</td>
<td>-1.666</td>
<td>-5.439</td>
</tr>
<tr>
<td>C</td>
<td>-0.171</td>
<td>-3.413</td>
<td>0.021</td>
<td>H</td>
<td>4.840</td>
<td>-3.657</td>
<td>0.939</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S4 Spin-vibronic Hamiltonian and Quantum Dynamics

To study the excited state dynamics of the Ag-Cz and Cu-Cz, we adopt a 2-dimensional model spin-vibronic Hamiltonian. The model spin-vibronic Hamiltonian for Au-Cz is described in ref. It include the three lowest triplet states (T_1, T_2 and T_3) as well as either the lowest or the two lowest singlet states (S_1 and S_2) for Ag-Cz and Au-Cz, respectively. Each of the three M_s components of the triplet states are considered. The Hamiltonian contains therefore 10 or 11 electronic states, for Ag-Cz and Au-Cz, respectively.

The two degrees of freedom are φ and r_{M-N_2} discussed in the main text.

The Hamiltonian operator is expressed as:

$$\mathcal{H} = T_N + W$$

where T_N and W are the kinetic and potential energy operators, respectively, and are defined in sections S1 and S2.

S1 The kinetic energy operator

In this work, we adopt a kinetic energy operator (KEO) expressed as a sum of two uncoupled mono-dimensional KEOs,

$$T_N = -\frac{1}{2I} \frac{\partial^2}{\partial \varphi^2} - \frac{1}{2\mu} \frac{\partial^2}{\partial r_{M-N_2}^2}.$$ (2)

The first term is the KEO of the rotation of a solid top, where I is the moment of inertia,

$$I = \sum_i m_i r_i^2$$ (3)

where i denotes all atoms of the rotating carbazole ligand, m_i denotes their mass, and r_i denotes their distance to the rotation axis. The second term is the KEO associated to r_{M-N_2}, with μ being the reduced mass of the system,

$$\mu = \frac{\sum_A m_A (\sum_B m_B)}{\sum_A m_A + \sum_B m_B}$$ (4)

where A and B denote the atoms of the Cz and CAAC (including the metal) moieties, respectively, and m_A and m_B denote their respective mass. The parameters I and μ are reported in table S12.

<table>
<thead>
<tr>
<th></th>
<th>I / amu, a_0^2</th>
<th>μ / amu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu-Cz</td>
<td>5927.01</td>
<td>130.08</td>
</tr>
<tr>
<td>Ag-Cz</td>
<td>5887.63</td>
<td>133.85</td>
</tr>
</tbody>
</table>

Table S12: Moment of inertia I and reduced mass μ for Cu-Cz and Ag-Cz.

S2 The potential energy

The potential energy component of the Hamiltonian, W, is expressed as the sum:

$$W = W^{\text{vib}} + W^{\text{SOC}},$$ (5)

where W^{vib} contains the diabatic electronic states and the coupling between them, described in sections S1 for Ag-Cz and S2 for Cu-Cz. W^{SOC} contains the spin-orbit coupling matrix elements (SOCMEs) in
the diabatic picture. They are obtained by transformation of the computed SOCME between the so-called electronic adiabatic states \(V^{\text{SOC}}\). Let \(R\) be the adiabatic to diabatic rotation matrice that transforms the adiabatic electronic states \(V\) into the diabatic electronic states matrix \(W^{\text{vib}}\) through the transformation:

\[
W^{\text{vib}} = R^{-1} V R.
\]

\(W^{\text{soc}}\) is then obtained through the same rotation:

\[
W^{\text{soc}} = R^{-1} V^{\text{soc}} R.
\]

\(W^{\text{soc}}\) and \(V^{\text{soc}}\) are reported, for \textbf{Ag-Cz} and \textbf{Cu-Cz} in tables S15 and S17, respectively, and the rotation matrices for \textbf{Ag-Cz} and \textbf{Cu-Cz} in tables S16 and S18, respectively.

The vibronic coupling occurs between electronic states of same spin multiplicity, \(W^{\text{vib}}\) can therefore be written:

\[
W^{\text{vib}} = \begin{pmatrix}
E_{T_1} & \lambda^{T_1,T_2} & \lambda^{T_1,T_3} & 0 \\
\lambda^{T_1,T_2} & E_{T_2} & \lambda^{T_2,T_3} & 0 \\
\lambda^{T_1,T_3} & \lambda^{T_2,T_3} & E_{T_3} & 0 \\
0 & 0 & 0 & E_{S_1}
\end{pmatrix}
\]

\(E_{T_n}\) and \(E_{S_1}\) being the diabatic potential energy for the triplet and \(S_1\) states, and \(\lambda^{T_n,T_m}\) is the vibronic coupling between the \(T_n\) and \(T_m\) states. \(W^{\text{soc}}\) is written:

\[
W^{\text{soc}} = \begin{pmatrix}
0 & \eta^{T_1,T_2} & \eta^{T_1,T_3} & \eta^{T_1,S_1} \\
\eta^{T_1,T_2} & 0 & \eta^{T_2,T_3} & \eta^{T_2,S_1} \\
\eta^{T_1,T_3} & \eta^{T_2,T_3} & 0 & \eta^{T_3,S_1} \\
\eta^{T_1,S_1} & \eta^{T_2,S_1} & \eta^{T_3,S_1} & 0
\end{pmatrix}
\]

with

\[
\eta^{T_n,T_m} = \begin{pmatrix}
\mathcal{I}(\eta') & -\mathcal{R}(\eta) + \mathcal{I}(\eta) & 0 \\
-\mathcal{R}(\eta) + \mathcal{I}(\eta) & 0 & \mathcal{R}(\eta) + \mathcal{I}(\eta) \\
0 & \mathcal{R}(\eta) + \mathcal{I}(\eta) & \mathcal{I}(\eta')
\end{pmatrix}
\]

and

\[
\eta^{T_n,S_1} = \begin{pmatrix}
\mathcal{R}(\eta) + \mathcal{I}(\eta) \\
\mathcal{I}(\eta') \\
\mathcal{R}(\eta) - \mathcal{I}(\eta)
\end{pmatrix}
\]

\(\mathcal{R}(\eta)\) and \(\mathcal{I}(\eta)\) are the real and imaginary part of the SOCMEs. In the present model we consider them as constant, taking their value at the minimum of \(S_1\) excited state. The \(3\times3\) matrix in Equation 8 represents the the coupling between each of the \(M_\pi\) components of the triplet states. \(W^{\text{vib}}\) is constructed by a fit to the diabatic electronic states along the \(r_{\text{Au-N}_2}\) stretch and torsion, \(\varphi\).

The diabatic electronic states and coupling are computed using the diabatisation scheme \(^6\) implemented within Q-chem. The details of the fit of the diabatic states and coupling for \textbf{Ag-Cz} and \textbf{Cu-Cz} are described in sections S1 and S2.

\section*{S3 Wavepacket Dynamics}

As for ref. \(^5\) The quantum dynamics were performed using the multi-configurational time-dependent Hartree (MCTDH) method as implemented within the Quantics quantum dynamics package. \(^7\) The 2-dimensional model spin-vibronic Hamiltonian was represented on a Fast Fourier Transform (FFT) grid of...
Figure S3: Diabatic potential energy curves (top) and vibronic coupling (bottom) for Cu-Cz (left), Ag-Cz (center), and Au-Cz (right) along r_{M-N_2}.

1001 x 801 grid points for the torsion and the stretching modes, respectively. The torsional mode was set with periodic boundary conditions ranging from $-\pi \rightarrow \pi$. The multi-set formalism was adopted, and 10 single particle functions (SPFs) were used for each mode on the S_1 and T_1 states and 2 SPFs were used for each mode on the T_2 and T_3 states. The evolution of the A-vector was calculated with the constant mean field integration scheme, and the SPFs were propagated with the Runge-Kutta integrator to eighth order (RK8). One initial wavepacket used in the simulations was obtained from a relaxation of a guessed wavepacket upon the ground state surface along the stretching motion, vertically projected onto the S_1 surface. The width and position of the initial wavepacket along the torsion was adopted to better represent the distribution of φ associated with the flat nature of the potential along this motion.

S5 Potential Energy Surfaces

S1 The potential Ag-Cz

The diabatic potential energy surface for state i as a function of φ and r (E_i) can be decomposed as

$$E_i(\varphi, r) = E_i(\varphi) + E_i(r)$$

(12)

where $E_i(\varphi)$ and $E_i(r)$ are the diabatic energies along each coordinate. The analytical expressions fitted to the calculation diabatic energies take the form:

$$E_i(\varphi) = \beta_i \cos(2(\varphi - \tau_i)) + \gamma_i \cos(0.5(\varphi - \psi_i))^{64} + \delta_i \cos(0.5(\varphi - \theta_i))^{64}.$$

(13)

along the torsion φ, and is a Morse potential along the stretch coordinate r:

$$E_i(r_{Ag-N_2}) = D_i \left(\exp \left(-\alpha_i (r_{Ag-N_2} - r_{0_{Ag-N_2}})^2 \right) - 1 \right)^2.$$

(14)
where D_i is the dissociation energy, α describes the width of the potential, and $r_{Ag-N_2}^0$ is the bond length at the minimum of energy. The fit parameters are reported in Tab. S13.

The vibronic coupling is decomposed in a similar fashion:

$$\lambda^{i,j}(\varphi, r) = \lambda^{i,j}(\varphi) + \lambda^{i,j}(r)$$

(15)

where the analytical expressions of $\lambda^{i,j}(\varphi)$ and $\lambda^{i,j}(r)$ fitted to the computed coupling take the form:

$$\lambda^{T_n,T_m}(\varphi) = \epsilon_1 \sin(1(\varphi - \nu_1)) + \epsilon_2 \sin(0.5(\varphi - \nu_2)) + \epsilon_3 \sin(0.5(\varphi - \nu_3))$$

(16)

along the torsion φ, and: Vibronic coupling along the stretch are fitted using a second order polynomial expression:

$$\lambda^{T_n,T_m}(r_{Ag-N_2}) = ar_{Ag-N_2}^2 + br_{Ag-N_2} + \lambda^{T_n,T_m}(\varphi_0).$$

(17)

along the stretch coordinate r. All fit parameters for the vibronic coupling are reported in Tab. S13.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>S_1</th>
<th>T_1-T_2</th>
<th>T_1-T_3</th>
<th>T_2-T_3</th>
<th>T_1-T_2</th>
<th>T_1-T_3</th>
<th>T_2-T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>β/eV</td>
<td>-0.004</td>
<td>-0.013</td>
<td>-0.006</td>
<td>-0.036</td>
<td>-0.112</td>
<td>-0.090</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ/eV</td>
<td>0.834</td>
<td>0.878</td>
<td>0.860</td>
<td>0.832</td>
<td>0.126</td>
<td>0.111</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ/eV</td>
<td>0.666</td>
<td>0.704</td>
<td>0.687</td>
<td>0.664</td>
<td>-0.132</td>
<td>-0.113</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ/\circ</td>
<td>-210.3</td>
<td>-181.3</td>
<td>-197.0</td>
<td>-176.7</td>
<td>-105.6</td>
<td>-80.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ/\circ</td>
<td>60.4</td>
<td>60.4</td>
<td>60.4</td>
<td>60.4</td>
<td>-206.8</td>
<td>-204.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ/\circ</td>
<td>-119.4</td>
<td>-119.4</td>
<td>-119.4</td>
<td>-119.4</td>
<td>-26.6</td>
<td>-24.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>S_1</th>
<th>T_1-T_2</th>
<th>T_1-T_3</th>
<th>T_2-T_3</th>
<th>T_1-T_2</th>
<th>T_1-T_3</th>
<th>T_2-T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_i/eV</td>
<td>1.278</td>
<td>2.012</td>
<td>1.357</td>
<td>1.171</td>
<td>0.0045</td>
<td>0.0002</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α/\AA^{-1}</td>
<td>1.770</td>
<td>1.628</td>
<td>1.924</td>
<td>1.854</td>
<td>0.0020</td>
<td>-0.0061</td>
<td>-0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_{Ag-N}^0/\AA</td>
<td>-0.051</td>
<td>-0.067</td>
<td>-0.072</td>
<td>-0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ_i/eV</td>
<td>2.96</td>
<td>3.00</td>
<td>3.43</td>
<td>3.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S13: Fitted parameters of the diabatic states (left) and vibronic coupling (right) along the torsion φ (top) and the stretch r (bottom) for the Ag-Cz complex. Do the stretch part
S2 The potential Cu-Cz

Due to the bent C-Cu-N angle, the analytical expressions for both the diabatic energies and the coupling need to be more complex to assess the asymmetry. The diabatic energy along φ for the singlet states is

$$S_i(\varphi) = a_1 \cos (2 (\varphi - \tau_1)) + a_2 \cos (0.5 (\varphi - \tau_2))^{64} + a_3 \cos (0.5 (\varphi - \tau_3))^{64}$$
$$+ a_4 \cos (0.5 (\varphi - \tau_4))^{\beta_i} + a_5 \cos (0.5 (\varphi - \tau_5))^{\beta_i} + \varepsilon_i \tag{18}$$

analytical expression and for the triplet states by

$$T_i(\varphi) = a_1 \cos (2 (\varphi - \tau_1)) + a_2 \cos (0.5 (\varphi - \tau_2))^{64} + a_3 \cos (0.5 (\varphi - \tau_3))^{64}$$
$$+ a_4 \cos (4 (\varphi - \tau_4)) + a_5 \cos (0.5 (\varphi - \tau_5))^{64} + \varepsilon_i \tag{19}$$

analytical expression. The energy along the stretch coordinate takes the form of a Morse potential:

$$E_i(r_{Cu-N}) = D_i \left(\exp \left(-\alpha_i (r_{Cu-N} - r^0_{Cu-N}) - 1 \right)^2 \right). \tag{20}$$

The vibronic coupling along φ is fitted by:

$$T_1 - T_2(\varphi) = a_1 \sin (x - b_{11}) + a_2 \sin (x - b_{12})^3 + s1$$
$$T_1 - T_3(\varphi) = a_1 \sin (2 (x - b_{1})) + s2$$
$$T_2 - T_3(\varphi) = a_1 \cos (x - b_{1}) + a_2 \cos (0.5 (x - b_{2}))^{36} + a_3 \cos (0.5 (x - b_{3}))^{36}$$
$$S_1 - S_2(\varphi) = a_1 \sin (x - b_{1})^3 + a_2 \sin (x - b_{2})^3 + s4 \tag{21}$$

And along r_{Cu-N} by a linear function:

$$\lambda_{i,j} (r_{Cu-N}) = ar_{Cu-N} + b. \tag{22}$$

All fit parameters are reported in Tab.S14.
Table S14: Fitted parameters of the diabatic states (left) and vibronic coupling (right) along the torsion \(\varphi \) (top) and the stretch \(r \) (bottom) for the Cu-Cz complex.

S6 The Spin-Orbit Coupling Matrix Elements

S1 SOC in Ag-Cz

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(T_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1) / eV</td>
<td>-0.033</td>
<td>0.000</td>
<td>-0.100</td>
<td>0.041</td>
<td>-0.027</td>
</tr>
<tr>
<td>(a_2) / eV</td>
<td>2.721</td>
<td>2.721</td>
<td>2.720</td>
<td>2.721</td>
<td>2.721</td>
</tr>
<tr>
<td>(a_3) / eV</td>
<td>3.674</td>
<td>3.674</td>
<td>3.674</td>
<td>3.674</td>
<td>3.674</td>
</tr>
<tr>
<td>(a_4) / eV</td>
<td>-0.024</td>
<td>-0.024</td>
<td>0.054</td>
<td>0.090</td>
<td>-0.027</td>
</tr>
<tr>
<td>(a_5) / eV</td>
<td>0.046</td>
<td>0.014</td>
<td>0.016</td>
<td>0.046</td>
<td>0.041</td>
</tr>
<tr>
<td>(\tau_1) (^/)</td>
<td>-174.5</td>
<td>168.8</td>
<td>183.1</td>
<td>82.9</td>
<td>168.8</td>
</tr>
<tr>
<td>(\tau_2) (^/)</td>
<td>118.6</td>
<td>118.6</td>
<td>118.6</td>
<td>118.6</td>
<td>118.6</td>
</tr>
<tr>
<td>(\tau_3) (^/)</td>
<td>-59.0</td>
<td>-59.0</td>
<td>-59.0</td>
<td>-59.0</td>
<td>-59.0</td>
</tr>
<tr>
<td>(\tau_4) (^/)</td>
<td>-168.8</td>
<td>-168.8</td>
<td>57.3</td>
<td>57.3</td>
<td>-168.8</td>
</tr>
<tr>
<td>(\tau_5) (^/)</td>
<td>52.8</td>
<td>55.6</td>
<td>-116.3</td>
<td>-122.0</td>
<td>55.6</td>
</tr>
<tr>
<td>(b)</td>
<td>-</td>
<td>-</td>
<td>64</td>
<td>30</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(S_1)</th>
<th>(S_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_i) / eV</td>
<td>6.149</td>
<td>7.060</td>
<td>6.092</td>
<td>7.050</td>
<td>6.316</td>
</tr>
<tr>
<td>(\alpha) / Å(^{-1})</td>
<td>1.763</td>
<td>1.639</td>
<td>1.769</td>
<td>1.639</td>
<td>1.775</td>
</tr>
<tr>
<td>(r_{\text{Cu-N}}) / Å</td>
<td>-0.002</td>
<td>-0.008</td>
<td>-0.005</td>
<td>-0.008</td>
<td>-0.007</td>
</tr>
<tr>
<td>(\epsilon_i) / eV</td>
<td>2.793</td>
<td>2.898</td>
<td>3.367</td>
<td>2.908</td>
<td>3.195</td>
</tr>
</tbody>
</table>

Diabatic SOC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(3^3\text{CT})</th>
<th>(3^3\text{LE}_{\text{CAAC}})</th>
<th>(3^3\text{LE}_{\text{Cz}})</th>
<th>(1^1\text{CT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^3\text{CT})</td>
<td>0.00</td>
<td>295.20</td>
<td>26.68</td>
<td>1.92</td>
</tr>
<tr>
<td>(3^3\text{LE}_{\text{CAAC}})</td>
<td>295.21</td>
<td>0.00</td>
<td>3.97</td>
<td>142.81</td>
</tr>
<tr>
<td>(3^3\text{LE}_{\text{Cz}})</td>
<td>26.68</td>
<td>3.97</td>
<td>0.00</td>
<td>13.33</td>
</tr>
<tr>
<td>(1^1\text{CT})</td>
<td>1.92</td>
<td>142.81</td>
<td>13.33</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(3^3\text{CT})</th>
<th>(3^3\text{LE}_{\text{CAAC}})</th>
<th>(3^3\text{LE}_{\text{Cz}})</th>
<th>(1^1\text{CT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^3\text{CT})</td>
<td>0.00</td>
<td>295.31</td>
<td>27.83</td>
<td>2.58</td>
</tr>
<tr>
<td>(3^3\text{LE}_{\text{CAAC}})</td>
<td>295.31</td>
<td>0.00</td>
<td>1.80</td>
<td>142.76</td>
</tr>
<tr>
<td>(3^3\text{LE}_{\text{Cz}})</td>
<td>27.83</td>
<td>1.80</td>
<td>0.00</td>
<td>12.84</td>
</tr>
<tr>
<td>(1^1\text{CT})</td>
<td>2.58</td>
<td>142.76</td>
<td>12.84</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table S15: Adiabatic (top) and Diabatic (bottom) SOC (in cm\(^{-1}\)) between the considered states for Ag-Cz
Table S16: Adiabatic to diabatic matrix rotation for Ag-Cz

S2 SOC in Cu-Cz

Table S17: Adiabatic (top) and Diabatic (bottom) SOC (in cm$^{-1}$) between the considered states for Cu-Cz

Table S18: Adiabatic to diabatic matrix rotation for Cu-Cz

S7 Supplementary Dynamics

S1 Dynamics Ag-Cz
Figure S4: Evolution of the diabatic population along time for Ag-Cz with the Hamiltonian without 3LE(Cz)
Figure S5: Evolution of the diabatic population along time for Ag-Cz with the Hamiltonian without 3LE(CAAC)
Figure S6: Evolution of the diabatic population along time for Ag-Cz with the Hamiltonian without 3LE(Cz) and 3LE(CAAC).
Figure S7: Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without $^1\text{LE(CAAC)}$.
Figure S8: Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without $^3\text{LE(Cz)}$.
Figure S9: Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without $^3\text{LE}(\text{Cz})$ and $^1\text{LE}(\text{CAAC})$.
Figure S10: Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without 3LE(CAAC).
Figure S11: Evolution of the diabatic population along time for Cu-Cz with the Hamiltonian without 3LE(Cz), 3LE(CAAC) and 1LE(CAAC).
References

