Supporting Information

Layer by Layer Supported Laccase on Lignin Nanoparticles catalyzes the selective Oxidation of Alcohols to Aldehydes

Davide Piccinino[a], Eliana Capecchi[a], Lorenzo Botta[a], Paolo Bollella[b], Riccarda Antiochia[b], Marcello Crucianelli[c], and Raffaele Saladino[a]∗

[a]Department of Biological and Ecological Sciences, University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
[b]Department of Chemistry and Drug Technologies, Sapienza University of Rome P.le Aldo Moro 5, 00185 Rome, Italy
[c]Department of Physical and Chemical Sciences, University of Aquila, Via Vetoio I, Coppito, 67100 Aquila, Italy

Contents

SI #1 SEM image of catalyst IV after the sixth run of oxidation of alcohol 3.

SI #2 Phosphorus Nuclear Magnetic Resonance (31P-NMR) analysis of phosphitylated lignin organosolv and cationic lignin (CATLIG) samples

SI #1 SEM analysis of catalyst IV after the sixth run of oxidation of alcohol 3.

Figure S1. SEM analysis of catalyst IV after the sixth run of oxidation of alcohol 3. The analysis showed a complete integrity of the support.

SI #2 Phosphorus Nuclear Magnetic Resonance (31P-NMR) analysis of phosphitylated lignin organosolv and cationic lignin (CATLIG) samples

The qualitative and quantitative analysis of phenolic moieties in organosolv lignin (OL) and in cationic lignin (CATLIG) were determined by 31P-NMR analysis. Typically, the appropriate sample (10 mg) was dissolved in pyridine/CDCl3 (300 μL; ratio 1.6/1.0 v/v), followed by addition of chrome (III) acetylacetonate solution (50 μL, 11.4 mg/ml) as relaxing agent. Then, the phosphitylation reagent 2-chloro-4,4,5,5-tetramethyl-1,3,2-
dioxaphospholane (200 μl) was added under magnetic stirring at 45 °C for 2 hours. NMR analysis was performed in the presence of N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide (10 μmol) as an internal standard on a Bruker 400MHz apparatus. The 31P NMR (ppm) characteristic range for any OH groups have been derived from literature2,3.

The increase of the signal relative to aliphatic OH groups and the decrease of remaining OH aromatic groups confirmed the cationization reaction of lignin organosolv to yield CATLIG (Figure 1).

Figure S2. 31P NMR analysis of phosphitylated lignin organosolv and cationic lignin (CATLIG) in presence of internal standard (N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide).

References