Supporting Information

Reactive adsorption desulfurization of thiophene over NiMo/ZnO, a new adsorbent with high desulfurization performance and sulfur capacity at moderate temperature

Mingxing Tanga,b, Weixing Wangc, Ligong Zhoua, Ye Zhanga, Zhangfeng Qina, Wenpeng Hana, Jianguo Wanga, Hui Gea,*, Xuekuan Lia,*

a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China

b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

c Southwest petroleum University, School of Chemistry & Chemical Engineering, Chengdu, Sichuan, 650100, P. R. China

Fig. S1 The SEM photograph of ZnO support with magnification of
a)2000 times, and b)50000 times
CuSO₄ aqueous solution can react with H₂S and form black CuS precipitation. It is an effective indicator to detect accumulated amount of trace H₂S. In this work, 0.1 mol/L CuSO₄ aqueous solution was prepared as follow: 16.0 g CuSO₄ dissolved with deionized water then 1 ml of sulfuric acid (98%) was added into the solution to prevent the hydrolysis of CuSO₄. Finally, the mixed solution was transferred to 1000 ml volumetric flask and filled with deionized water.

Fig. S2 H₂S in tail gas detected by CuSO₄ aqueous solution over 3Ni7Mo/ZnO-280.
Fig. S3 Representative TEM imagines of used 3Ni7Mo/ZnO adsorbent (a) 3Ni7Mo/ZnO-280, (b) 3Ni7Mo/ZnO-340, (c) 3Ni7Mo/ZnO-400, (d) 3Ni7Mo/ZnO-500.