Supporting Information

Enhanced Electrocatalytic Dechlorination of 2,4-Dichlorophenoxyacetic Acid on In-situ Prepared Pd-anchored Ni(OH)$_2$ Bifunctional Electrode: Synergistic Effect between H* Formation on Ni(OH)$_2$ and Dechlorination Steps on Pd

Shuang Song1,2, Qiuxiang Liu1,2, Jinhui Fang1, Weiting Yu1,*

1College of Environment, Zhejiang University of Technology, Hangzhou 310032, People’s Republic of China

2Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310032, People’s Republic of China

*Corresponding author: Weiting Yu

E-mail: weitingyu@zjut.edu.cn
Figure S1. Time dependence of 2,4-D concentration at the applied potential of −0.40 V, −0.65 V, −0.75 V, −1.00 V and −1.25 V on PdCl$_{32}$.

Figure S2. TEM images of Pd$_{1}$HCl$_{32}$ (a) TEM (b) HRTEM and (c) Mapping of element.
Figure S3. TEM images of Pd\textsubscript{1}Cl\textsubscript{5} (a) TEM, (b) HRTEM of Pd, (c) HRTEM of Ni and (d) Mapping of element.
Figure S4. TEM images of Pd$_2$Cl$_{302}$ (a) TEM, (b) HRTEM of Pd, (c) HRTEM of Ni and (d) Mapping of element.
Figure S5. The trend of current efficiency with dechlorination time on Pd$_4$Cl$_{32}$ at the applied potential of −0.65 V.

Figure S6. FE-SEM image of Pd$_4$Cl$_{32}$ after 5 cycles of 2,4-D dechlorination.