Supporting Information

Fast and deep oxidative desulfurization of dibenzothiophene with catalysts of MoO$_3$-TiO$_2$@MCM-22 featuring adjustable Lewis and Bronsted acid sites

Qian Luo$^{a,\#}$, Qi Zhou$^{a,\#}$, Yan Lina, Shaohua Wua, Hongyu Liua,*, Cheng Dub, Yuanyuan Zhongb and Chunping Yanga,b,*

a College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China;

b Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.

These authors contribute to this article equally.

* Corresponding authors. Email address: hyliu@hnu.edu.cn (H.Y. Liu), yangc@hnu.edu.cn (C.P. Yang).
The Brønsted and Lewis acid sites of the samples were determined by FT-IR spectra with pyridine as the probe molecule (Py-FTIR) using a PE Frontier FT-IR Spectrometer. Prior to analysis, approximately 25 mg of the catalysts was pressed into a 13 mm self-supported wafer and activated in the IR cell at 623 K for 2.0 h at 10^{-2} Pa. Then, it was cooled to room temperature, the sample was exposed to pyridine vapor under vacuum for 0.5 h followed by evacuation of excess pyridine for 0.5 h. Then, the cell was heated to 473 K at a rate of 10 K min$^{-1}$ and under this temperature for 1.0 h to desorb physisorbed pyridine.
Fig. S1. TEM images of (A) MT-0:5, (B) MT-1:4 and (C) MT-5:0 with the corresponding particle size distribution.
Fig. S2. High resolution XPS spectrum of (A) Ti 2p of MT-0:5, (B) Mo 3d of MT-5:0.
Fig. S3. NH$_3$-TPD profiles of the as-prepared catalysts.