Supporting Information

One Step Phenol Synthesis from Benzene Catalysed by Nickel(II) Complexes

Sethuraman Muthuramalingam,^a Karunanithi Anandababu,^a Marappan Velusamy,^b and Ramasamy Mayilmurugan^{*,a}

^aBioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India. Email: <u>mayilmurugan.chem@mkuniversity.org</u>

^bDepartment of Chemistry, North Eastern Hill University, Shillong 793022, India.

Figure S1. ¹H and ¹³C NMR spectra for L3 in CDCl₃.

Figure S2. ESI-Mass spectra of 3 in acetonitrile.

Figure S3. Paramagnetic ¹H NMR spectra for **4** in CD₃CN.

Figure S5. Cyclic voltammogram and differential pulse voltammogram of **3** (5×10^{-3} M) in acetonitrile at 25 °C. Supporting electrolyte: 0.5 M TBAP; Reference: Ag/Ag⁺; working electrode: Pt-sphere; Counter electrode: Pt wire.

Figure S6. Differential pulse voltammogram of **1 - 2** and **4 - 6** (5×10^{-3} M) in acetonitrile at 25 °C. Supporting electrolyte: 0.5 M TBAP; Reference: Ag/Ag⁺; working electrode: Pt-sphere; Counter electrode: Pt wire.

Figure S7. The standard calibration curve using GC, area ratio of phenol to the internal standard (nitrobenzene) $(A_P/A_{IS})^a$. ^aA is designated as the chromatographic peak area; p stands for phenol and IS stands for internal standard (nitrobenzene).

Figure S8. GC-MS profile for the formation of phenol using catalyst 3 and in presence of nitrobenzene as an internal standard.

Figure S9. Steric map of complex 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f).

Figure S10. Time courses of the phenol formation from benzene (5 mmol) with H₂O₂ (25 mmol) in the presence of 1 - 6 (2.5 μ mol) and Et₃N (5 μ mol) in acetonitrile (3.0 mL) at 25°C.

Figure S11. Plot of phenol conversion, selectivity, and yield from benzene (5 mmol) catalyzed by **1** - **6** (2.5 μ mol) in the presence of aqueous H₂O₂ (25 mmol) and Et₃N (5 μ mol) at 25°C (**a**) and 60 °C (**b**).

Figure S12. H₂O₂ dependent catalytic hydroxylation of benzene (5 mmol) catalyzed by **3** (2.5 μ mol) and Et₃N (5 μ mol) in acetonitrile (3.0 mL) at 60 °C.

Figure S13. Plot of conversion, selectivity, and yield from benzene (5 mmol) catalyzed by **1** - **6** (2.5 μ mol) in the presence of aqueous H₂O₂ (5 mmol) and Et₃N (5 μ mol) at 25°C (**a**) and 60 °C (**b**).

Figure S14. Bulk scale phenol production using catalyst **3**. Reaction condition: benzene (30 mmol, 2.7 mL), **3** (0.05 mmol, 0.043 g), Et₃N (0.1 mmol), 30% aqueous H_2O_2 (100 mmol) in CH₃CN (20 mL) at 60 °C for 96 hours.

Figure S15. GC-MS profile for the reaction of phenol (5 mmol) catalyzed by **3** (2.5 μ mol) in the presence of H₂O₂ (25 mmol) and Et₃N (5.0 μ mol) at 60°C.

Scheme S2. The catalytic hydroxylation of nitrobenzene with 3

Scheme S3. The catalytic hydroxylation of chlorobenzene with 3

Scheme S4. The catalytic hydroxylation of anisole with 3

Figure S16. GC-MS profile for the measurement of KIE using C_6H_6 (2.5 mmol) and C_6D_6 (2.5 mmol), **3** (2.5 μ mol), H₂O₂ (2.5 mmol) and Et₃N (5 μ mol) at 60 °C over 24 hours.

Figure S17. Isotopic labeling studies for the reaction of benzene (0.12 mmol) with $H_2^{18}O_2$ (5 equivalents) and Et₃N (5.0 μ mol) using catalyst **3**.

Figure S18. The plot of $[1 + \log(Abs)]$ vs time for the calculation of k_{obs} for the formation of $[(L2Ni^{III})_2(\mu-O)_2]^{2+}$ from **2.**

Figure S19. X-band EPR spectrum of $[(L2Ni^{III})_2(\mu-O)_2]^{2+}$ (1 × 10⁻⁴ M), which was generated by addition of H₂O₂ (10 equivalents) to **2** (1 × 10⁻⁴ M) in the presence of E₃N (two equivalents) in acetone at -80 °C.

Figure S20. (a) HR-ESI mass spectra for in situ generated $[(L2Ni^{III})_2(\mu-O)_2]^{2+}$ by reaction of **2** with H₂O₂ (10 equivalents) and E₃N (two equivalents) in acetonitrile. Calculated (*m/z*) for C₃₄H₄₈N₈Ni₂O₂ [M+H]⁺ requires (monoisotopic mass) 359.1304, found 359.1365. (b) Experimental (top) and calculated (bottom) HR-ESI mass spectra of $[(L2Ni^{III})_2(\mu^{-18}O)_2]^{2+}$ by reaction of **2** with H₂¹⁸O₂ (90% ¹⁸O atom purity) in acetonitrile. Calculated (*m/z*) for C₃₄H₄₈N₈Ni₂¹⁸O₂ [M+H]⁺ requires (monoisotopic mass) 361.1424, found 361.1420.

Figure S21. The plot of $[1 + \log(Abs)]$ vs time for the decay of $[(L2Ni^{III})_2(\mu-O)_2]^{2+}$ with benzene.

Figure S22. Cyclic voltammogram of **2** (5.0×10^{-3} M) with the addition of 10 equivalents of H₂O₂ and two equivalents of Et₃N in acetonitrile at 25 °C. Supporting electrolyte: 0.5 M TBAP; Reference: Ag/Ag⁺; Working electrode: Pt-sphere; Counter electrode: Pt wire; Scan rate = 100 mV s⁻¹.

Figure S23. (a) The electronic spectral change observed for **3** (1×10^{-4} M) with 10 equivalents of H₂O₂ and Et₃N (2 equivalents) in CH₃CN: MeOH (8:2) at -40 °C. Spectra were measured in 0.5 second time intervals. Inset: time course of the absorbance at 413 nm. (b) The plot of [1+ log(Abs)] vs time for the formation of [(L3Ni^{III})₂(μ -O)₂]²⁺.

Figure S24. (a) The electronic spectral change observed for $4 (1 \times 10^{-4} \text{ M})$ with 10 equivalents of H₂O₂ and Et₃N (2 equivalents) in CH₃CN: MeOH (8:2) at -40 °C. Spectra were measured in 0.5 second time intervals. Inset: time course of the absorbance at 406 nm. (b) The plot of $[1+\log(\text{Abs})]$ vs time for the formation of $[(L4Ni^{III})_2(\mu-O)_2]^{2+}$.

Figure S25. (a) The electronic spectral change observed for **6** (5×10^{-4} M) with 10 equivalents of H₂O₂ and Et₃N (2 equivalents) in CH₃CN: MeOH (8:2) at -40 °C. Spectra were measured in 0.5 second time intervals. Inset: time course of the absorbance at 409 nm. (**b**) The plot of [1+ log(Abs)] vs time for the formation of [(L6Ni^{III})₂(μ -O)₂]²⁺.

Figure S26. HR-ESI mass spectra for in situ generated $[(L3Ni^{III})_2(\mu-O)_2]^{2+}$ from **3** with H₂O₂ (10 equivalents) and E₃N (2 equivalents) in acetonitrile. Calculated value (*m/z*) for C₄₆H₇₂N₈Ni₂O₆ [M]⁺ (monoisotopic mass), 474.2141 and found value, 474.1992.

Figure S27. HR-ESI mass spectra for in situ generated $[(L4Ni^{III})_2(\mu-O)_2]^{2+}$ from **4** with H₂O₂ (10 equivalents) and E₃N (2 equivalents) in acetonitrile. Calculated (*m/z*) value for C₃₄H₄₄N₈Ni₂O₂ [M-H]⁺ (monoisotopic mass), 355.1069 and found value, 355.1036.

Figure S28. HR-ESI mass spectra for in situ generated $[(L6Ni^{III})_2(\mu-O)_2]^{2+}$ from **6** with H₂O₂ (10 equivalents) and E₃N (2 equivalents) in acetonitrile. Calculated value (*m/z*) for C₃₈H₅₂N₈Ni₂O₂ [M-H]⁺ (monoisotopic mass), 383.1382 and found value, 383.1431.

Figure S29. DFT of optimized HOMO and LUMO+1 of intermediates

Figure S30. Calculated electronic spectra of $[(L2Ni^{III})_2(\mu-O)_2]^{2+}$ by TD-DFT method.

		•	
		2	
Ni(1)-N(1)	2.105(3)	N(5)-Ni(1)-N(1)	93.20(12)
Ni(1)-N(2)	2.132(3)	N(5)-Ni(1)-N(3)	91.20(12)
Ni(1)-N(3)	2.109(3)	N(1)-Ni(1)-N(3)	83.23(11)
Ni(1)-N(4)	2.151(3)	N(5)-Ni(1)-N(6)	91.83(13)
Ni(1)-N(5)	2.101(3)	N(1)-Ni(1)-N(6)	85.66(13)
Ni(1)-N(6)	2.126(3)	N(3)-Ni(1)-N(6)	168.63(13)
		N(5)-Ni(1)-N(2)	171.40(12)
		N(1)-Ni(1)-N(2)	80.53(12)
		N(3)-Ni(1)-N(2)	82.26(12)
		N(6)-Ni(1)-N(2)	93.54(13)
		N(5)-Ni(1)-N(4)	90.78(12)
		N(1)-Ni(1)-N(4)	174.55(13)
		N(3)-Ni(1)-N(4)	100.43(12)
		N(4)-Ni(1)-N(6)	90.49(13)
		N(2)-Ni(1)-N(4)	95.88(12)

 Table S1 Selected bond distance^a (Å) bond angle(°) for complex 2.

^aStandard deviations in parenthesis

	2
Formula	C69H70B2N6Ni
FW	1063.64
Cryst. system	Orthorhombic
Space group	P _{bca}
Temperature	293 k
a/Å	35.8282(17)
b/Å	18.7973(8)
c/A ⁰	17.4964(7)
$\alpha/^0$	90
β^{0}	90
$\gamma/^0$	90
Volume/Å ³	11783.4(9)
Z	8
$\rho_{calc}mg/mm^3$	1.199
μ/mm^{-1}	0.376
F(000)	4512
Reflection collected	41779
Goodness-of-fit on F^2	1.074
R1 ^a	0.0762
wR2 ^b	0.1700

 Table S2. Crystal Data and Structure Refinement for complexes 2.

 $\boxed{{}^{a}R1=\sum \left|\begin{array}{c|c} F_{o} & - F_{c} \end{array}\right| / \sum F_{o}, {}^{b}WR_{2}=\sum w[(F_{o}-F_{c})^{2} / \sum w[(F_{o}^{2})^{2}]^{1/2}}$

		Redox data ^b		
Complexes	λ_{max}, nm $(\varepsilon, M^{-1} cm^{-1})^a$	${ m CV} E_{ m ox}({ m V})$	DPV (V)	
1	554 (73), 790 (48), 903 (82)	1.008	0.912	
2	545 (99), 788 (91), 855 (101)	1.024	0.926	
3	362 (76, sh), 561 (30), 783 (10), 918 (22)	1.051	0.940	
4	468 (64), 787 (47), 843 (46)	0.990	0.863	
5	594 (63), 792 (24), 898 (23)	0.966	0.851	
6	375 (88, sh), 481 (28), 782 (19), 852 (25)	0.997	0.876	

Table S3. Electronic Spectral and Redox data for 1 - 6.

^aConcentration: 5×10^{-3} M in CH₃CN at 25 °C. ^bConcentration: 5×10^{-3} M in CH₃CN at 25 °C. Supporting electrolyte: 0.5 M TBAP; Reference: Ag/Ag⁺; Working electrode: Pt-sphere; Counter electrode: Pt wire; Scan rate = 100 mV s⁻¹.

Entry ^a	[H ₂ O ₂] (mmol)	Conversion (%)	Yield (%)	Selectivity (%)
1	5	31	30	>99
2	10	34	33	98
3	15	37	35	97
4	20	39	38	97
5	25	42	41	97
6	30	48	41	86
7	35	53	42	79
8	40	59	43	72
9	45	64	43	67
10	50	65	43	67

Table S4: Influence of $[H_2O_2]$ concentration for benzene hydroxylation catalyzed by **3.**

^aReaction condition: benzene (5 mmol), catalyst **3** (2.5 μ mol, 0.05%) and triethylamine (5.0 μ mol), hydrogen peroxide (30%) (5 mmol to 50 mmol) in acetonitrile at 60 °C for 5 hours.

Complay	Temperature	Conversion	Selectivity	Yield ^a	TON	TOE(h-1)
Complex	(°C)	(%)	(%)	(%)	ION	$10F(n^{-1})$
	60°C	39	65	25	500	100
1	25°C	16	78	12	240	48
	60°C	31	87	27	540	108
2	25°C	16	89	14	280	56
3	60°C	31	99	30	600	120
	25°C	15	99	15	300	60
	60°C	25	62	15	300	60
4	25°C	16	71	12	240	48
5	60°C	20	57	12	240	48
	25°C	10	73	7	140	28
	60°C	27	66	18	360	72
6	25°C	18	77	14	280	56

Table S5: Catalytic hydroxylation of benzene with equal amount of H_2O_2 using 1 - 6.

^aReaction condition: benzene (5 mmol), catalyst (2.5 μ mol, 0.05%) and triethylamine (5.0 μ mol), hydrogen peroxide (30%) (5 mmol) in acetonitrile for 5 hours.

$[(L2Ni^{III})_2(\mu-O)_2]^{2+}$					
Ni(1)-N(1)	1.66	N(4)-Ni(1)-N(3)	79.98		
Ni(1)-N(2)	2.15	N(4)-Ni(1)-N(1)	72.98		
Ni(1)-N(3)	2.04	N(4)-Ni(1)-N(1)	138.24		
Ni(1)-N(4)	2.09	N(3)-Ni(1)-N(1)	82.85		
Ni(1)-O(1)	1.80	N(3)-Ni(1)-N(2)	85.90		
Ni(1a)-O(2)	1.84	N(1)-Ni(1)-N(2)	68.04		
		O(1)-Ni(1)-O(2)	81.34		
		O(1)-Ni(1a)-O(2)	83.60		
		O(2)-Ni(1)-N(1)	101.61		
		O(2)-Ni(1)-N(2)	95.44		
		O(2)-Ni(1)-N(3)	175.52		
		O(2)-Ni(1)-N(4)	96.30		

Table S6. Calculated bond distance and bond angle for $[(L2Ni^{III})_2(\mu-O)_2]^{2+}$ by TD-DFT method.

Center Number	Atomic Number	Atomic Type	Coor X	dinates (Angs Y	troms) Z
1	6	0	5.045962	1.018302	2.603673
2	6	0	3.894445	0.611948	3.282351
3	6	0	2.790842	0.163775	2.552884
4	7	0	2.855853	0.109394	1.190661
5	6	0	3.963484	0.516124	0.509483
6	6	0	5.084280	0.977514	1.208203
7	6	0	3.947516	0.439104 -	1.003455
8	7	0	2.667523	-0.188774	-1.491072
9	6	0	1.938423	0.740204 -	-2.412382
10	6	0	1.455787	1.838207	-1.567365
11	7	0	1.181253	1.465571	-0.294956
12	6	0	1.241256	2.418996	0.692649
13	6	0	1.353876	3.780440	0.371696
14	6	0	1.485569	4.162096	-0.962514
15	6	0	1.580843	3.180252	-1.942720
16	6	0	2.897200	-1.412668	-2.281250
17	6	0	3.651465	-2.494728	-1.541934
18	6	0	3.293659	-2.561164	-0.054000
19	7	0	1.842904	-2.329835	0.331203
20	6	0	1.935399	-2.674147	1.804525
21	6	0	1.182519	-3.417186	-0.446861
22	28	0	1.493890	-0.341405	0.024714
23	6	0	-1.909477	4.110990	-0.778145
24	6	0	-1.590934	3.678390	0.506675
25	6	0	-1.337567	2.317909	0.729326
26	7	0	-1.336401	1.416656	-0.306896
27	6	0	-1.768493	1.827254	-1.509843
28	6	0	-2.034204	3.171982	-1.798207
29	6	0	-2.133166	0.723056	-2.369394
30	7	0	-2.738203	-0.309479	-1.471998
31	6	0	-4.040593	0.211271	-0.904049
32	6	0	-3.987245	0.277808	0.612199
33	7	0	-2.823074	-0.042667	1.241460
34	6	0	-2.698691	-0.018541	2.599422
35	6	0	-3.798246	0.334326	3.384987
36	6	0	-5.005587	0.667528	2.763853
37	6	Õ	-5.105790	0.643233	1.369787
38	6	Õ	-2.995209	-1.479217	-2.386355
39	6	Ő	-1.845250	-2.455576	-2.435075
40	6	Ő	-1 785631	-3 230353	-1 124342
41	7	õ	-1.873945	-2.396717	0.140695
42	6	õ	-3.325436	-2.623377	0.553140
43	6	õ	-1.279084	-3.018227	1.322745
44	28	0	-1.483320	-0.415893	0.041482

Table S7a. Coordinates for the optimized geometry of $[(L2Ni^{III})_2(\mu-O)_2]^{2+}$

Standard Orientation:

4680 0.015434 0.0415082 1.284554 4710 5.904668 1.372816 3.158811 4810 3.852769 0.656968 4.362800 4910 1.889317 0.115351 3.076609 5010 5.972948 1.297402 0.678975 5110 4.090106 1.471879 -1.392841 5210 4.839963 -0.125894 -1.343294 5310 1.058710 0.256876 -2.879477 5410 2.585001 1.099833 -3.246135 5510 1.201077 2.132141 1.733029 5610 1.859737 4.528062 1.153671 5710 1.822464 3.456133 -2.601312 6010 3.444672 -1.202738 -3.229107 6110 4.752054 -2.349033 -1.602819 6210 3.454009 -3.448541 -2.076945 6310 3.685247 -3.549754 0.299142 6410 3.965689 -1.874321 0.469031 6510 1.874838 -3.771491 1.984469 6810 0.778628 -3.05856 -1.393219 7010 1.848496 4.254311 -0.761722 7110 -2.125822 5.154840	45	8	0	0.016771	-0.821825	-1.057422
47105.904668 1.372816 3.158811 4810 3.852769 0.656968 4.362800 4910 1.889317 -0.115351 3.076609 5010 5.972948 1.297402 0.678975 5110 4.090106 1.471879 -1.392841 5210 4.839963 -0.125894 -1.343294 5310 1.058710 0.256876 -2.879477 5410 2.585001 1.099883 -3.246135 5510 1.201077 2.132141 1.733029 5610 1.359937 4.528062 1.153671 5710 1.597336 5.206256 -1.224188 5810 1.822464 3.456133 -2.961716 5910 1.919000 -1.811549 -2.601312 6010 3.444672 -1.202738 -3.229107 6110 4.752054 -2.349033 -1602819 6210 3.454009 -3.448541 -2.076945 6310 3.655689 -1.874321 0.469031 6510 1.210474 -2.154642 2.452011 6610 2.286941 -2.369526 2.294625 6710 1.874838 -3.771491 1.984469 6810 0.778628 -3.050856 $-$	46	8	0	0.015434	-0.415082	1.284554
4810 3.852769 0.656968 4.362800 49 10 1.889317 -0.115351 3.076609 50 10 5.972948 1.297402 0.678975 51 10 4.090106 1.471879 -1.392841 52 10 4.839963 -0.125894 -1.343294 53 10 1.058710 0.256876 -2.879477 54 10 2.585001 1.099883 -3.246135 55 10 1.201077 2.132141 1.733029 56 10 1.597336 5.206256 -1.224188 58 10 1.822464 3.456133 -2.961716 59 10 1.919000 -1.811549 -2.601312 60 10 3.444672 -1.202738 -3.229107 61 10 4.752054 -2.349033 -1.602819 62 10 3.45409 -3.448541 -2.076945 63 10 3.65247 -3.549754 0.299142 64 10 3.965668 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.7868941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.778628 3.050856 -1.393219 70 10 <td>47</td> <td>1</td> <td>0</td> <td>5.904668</td> <td>1.372816</td> <td>3.158811</td>	47	1	0	5.904668	1.372816	3.158811
4910 1.889317 -0.115351 3.076609 5010 5.972948 1.297402 0.678975 5110 4.090106 1.471879 -1.392841 5210 4.839963 -0.125894 -1.343294 5310 1.058710 0.256876 -2.879477 5410 2.585001 1.099883 -3.246135 5510 1.201077 2.132141 1.733029 5610 1.359937 4.528062 1.153671 5710 1.597336 5.206256 -1.224188 5810 1.822464 3.456133 -2.601312 6010 3.444672 -1.202738 -3.229107 6110 4.752054 -2.349033 -1.602819 6210 3.454009 -3.448541 -2.076945 6310 3.685247 -3.549754 0.299142 6410 3.965689 -1.874221 0.469031 6511 2.16474 -2.156422 2.24625 6710 1.874838 -3.771491 1.98469 6810 0.574304 -4.102348 0.15576 6910 0.778628 -3.050856 -1.392191 701 0 1.844896 -4.254311 -0.761722 7110 -2.125822 5.154840 <t< td=""><td>48</td><td>1</td><td>0</td><td>3.852769</td><td>0.656968</td><td>4.362800</td></t<>	48	1	0	3.852769	0.656968	4.362800
5010 5.972948 1.297402 0.678975 51 10 4.090106 1.471879 -1.392841 52 10 4.839963 -0.125894 -1.343294 53 10 1.058710 0.256876 -2.879477 54 10 2.585001 1.099883 -3.246135 55 10 1.201077 2.132141 1.733029 56 10 1.359937 4.528062 1.153671 57 10 1.597336 5.206256 -1.224188 58 10 1.822464 3.456133 -2.961716 59 10 1.919000 -1.811549 -2.601312 60 10 3.444672 -1.202738 -3.229107 61 10 4.752054 -2.349033 -1.602819 62 10 3.454009 -3.448541 -2.076945 63 10 3.685247 -3.549754 0.299142 64 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.7748628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10	49	1	0	1.889317	-0.115351	3.076609
5110 4.090106 1.471879 -1.392841 52 10 4.839963 -0.125894 -1.343294 53 10 1.058710 0.256876 -2.879477 54 10 2.585001 1.099883 -3.246135 55 10 1.201077 2.132141 1.733029 56 10 1.359937 4.528062 1.1536711 57 10 1.597336 5.206256 -1.224188 58 10 1.822464 3.456133 -2.961716 59 10 1.919000 -1.811549 -2.601312 60 10 3.444672 -1.202738 -3.229107 61 10 4.752054 -2.349033 -1.602819 62 10 3.454009 -3.448541 -2.076945 63 10 3.685247 -3.549754 0.299142 64 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 1	50	1	0	5.972948	1.297402	0.678975
52104.839963-0.125894-1.343294 53 101.0587100.256876-2.879477 54 102.5850011.099883-3.246135 55 101.2010772.1321411.733029 56 101.3597374.5280621.153671 57 101.5973365.206256-1.224188 58 101.8124643.456133-2.961716 59 101.919000-1.811549-2.601312 60 103.444672-1.202738-3.229107 61 104.752054-2.349033-1.602819 62 103.454009-3.448541-2.076945 63 103.685247-3.5497540.299142 64 103.965689-1.8743210.469031 65 101.210474-2.1546422.452011 66 102.886941-2.3695262.294625 67 101.874838-3.7714911.984469 68 100.574304-4.1023480.155576 69 100.778628-3.050856-1.393219 70 10-1.888803.476578-2.774332 72 10-2.1258225.1548400.963523 72 10-2.8127511.054999-3.188957 76 10-1.266108 <td< td=""><td>51</td><td>1</td><td>0</td><td>4.090106</td><td>1.471879</td><td>-1.392841</td></td<>	51	1	0	4.090106	1.471879	-1.392841
53101.0587100.256876-2.87947754102.5850011.099883-3.24613555101.2010772.1321411.73302956101.3599374.5280621.15367157101.5973365.206256-1.22418858101.8224643.456133-2.96171659101.919000-1.811549-2.60131260103.444672-1.202738-3.22910761104.752054-2.349033-1.60281962103.454009-3.448541-2.07694563103.685247-3.5497540.29914264103.965689-1.8743210.46903165101.210474-2.1546422.45201166102.886941-2.3695262.29462567101.874838-3.7714911.98446968100.574304-4.1023480.15557669100.778628-3.050856-1.3932197010-1.1586881.9849091.7417307410-2.3888003.476578-2.7743327510-2.8127511.054999-3.1889577610-1.2061080.338494-2.8339107710-4.9076760.424522-1.183502 <t< td=""><td>52</td><td>1</td><td>0</td><td>4.839963</td><td>-0.125894</td><td>-1.343294</td></t<>	52	1	0	4.839963	-0.125894	-1.343294
54102.5850011.099883-3.24613555101.2010772.1321411.73302956101.3599374.5280621.15367157101.5973365.206256-1.22418858101.8224643.456133-2.96171659101.919000-1.811549-2.60131260103.444672-1.202738-3.22910761104.752054-2.349033-1.60281962103.454009-3.448541-2.07694563103.685247-3.5497540.29914264103.965689-1.8743210.46903165101.210474-2.1546422.45201166102.886941-2.3695262.29462567101.874838-3.7714911.98446968100.778628-3.050856-1.39321970101.848496-4.254311-0.7617227110-2.1258225.154840-0.9635237210-1.5598774.3813711.3291787310-1.586881.9849091.7417307410-2.3888003.476578-2.7743327510-2.8127511.054999-3.1889577610-1.2661080.3354074.463765 <td< td=""><td>53</td><td>1</td><td>0</td><td>1.058710</td><td>0.256876</td><td>-2.879477</td></td<>	53	1	0	1.058710	0.256876	-2.879477
1 0 1.201077 2.132141 1.733029 56 10 1.359937 4.528062 1.153671 57 10 1.597336 5.206256 -1.224188 58 10 1.822464 3.456133 -2.961716 59 10 1.919000 -1.811549 -2.601312 60 10 3.444672 -1.202738 -3.229107 61 10 4.752054 -2.349033 -1.602819 62 10 3.454009 -3.448541 -2.076945 63 10 3.685247 -3.549754 0.299142 64 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 -1.59877 4.381371 1.329178 73 1 0 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -1.206108 0.338494 -2.833910 77 10 -4.304458 1.223711 -1.284220 79 10 <t< td=""><td>54</td><td>1</td><td>Õ</td><td>2.585001</td><td>1.099883</td><td>-3.246135</td></t<>	54	1	Õ	2.585001	1.099883	-3.246135
56101.3599374.5280621.153671 57 101.5973365.206256-1.224188 58 101.8224643.456133-2.961716 59 101.919000-1.811549-2.601312 60 103.444672-1.202738-3.229107 61 104.752054-2.349033-1.602819 62 103.454009-3.448541-2.076945 63 103.685247-3.5497540.299142 64 103.965689-1.8743210.469031 65 11.210474-2.1546422.452011 66 102.886941-2.3695262.294625 67 101.874838-3.7714911.984469 68 100.574304-4.1023480.155576 69 100.778628-3.050856-1.393219 70 101.848496-4.254311-0.761722 71 10-2.1258225.154840-0.963523 72 10-1.5598774.3813711.329178 73 10-1.2848003.476578-2.774332 75 10-2.3888003.476578-2.774332 75 10-2.3828003.38494-2.833910 77 10-4.3044581.223711-1.284220 79 10-1.758409-0.26	55	1	Ő	1 201077	2.132141	1 733029
3710 1.597336 5.206256 1.224188 58 10 1.822464 3.456133 -2.961716 59 10 1.919000 -1.811549 -2.601312 60 10 3.444672 -1.202738 -3.229107 61 10 4.752054 -2.349033 -1.602819 62 10 3.454009 -3.448541 -2.076945 63 10 3.685247 -3.549754 0.299142 64 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874338 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 1<	56	1	Ő	1 359937	4 528062	1 153671
58101.8224643.456133-2.961716 59 101.919000-1.811549-2.601312 60 103.444672-1.202738-3.229107 61 104.752054-2.349033-1.602819 62 103.454009-3.448541-2.076945 63 103.685247-3.5497540.299142 64 103.965689-1.8743210.469031 65 101.210474-2.1546422.452011 66 102.886941-2.3695262.294625 67 101.874838-3.7714911.984469 68 100.574304-4.1023480.155576 69 100.778628-3.050856-1.393219 70 101.848496-4.254311-0.761722 71 10-2.1258225.154840-0.963523 72 10-1.5598774.3813711.329178 73 10-1.1586881.9849091.741730 74 10-2.3888003.476578-2.774332 75 10-2.8127511.054999-3.188957 76 10-1.758409-0.2638803.071566 80 10-3.7144360.3554074.463765 81 10-5.8631440.9447713.363055 82 10-6.040935 <td>57</td> <td>1</td> <td>Ő</td> <td>1 597336</td> <td>5 206256</td> <td>-1 224188</td>	57	1	Ő	1 597336	5 206256	-1 224188
351 0 1.022764 5.05135 2.501312 59 10 1.919000 -1.811549 -2.601312 60 10 3.444672 -1.202738 -3.229107 61 10 4.752054 -2.349033 -1.602819 62 10 3.454009 -3.448541 -2.076945 63 10 3.685247 -3.549754 0.299142 64 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.266108 0.338494 -2.833910 74 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.304458 1.223711 -1.284220 79 10 -1.266108 0.355407 4.463765 81 1 <td>58</td> <td>1</td> <td>0</td> <td>1 822464</td> <td>3 456133</td> <td>-2 961716</td>	58	1	0	1 822464	3 456133	-2 961716
37 1 0 1.317000 -1.011347 -2.001312 60 1 0 3.444672 -1.202738 -3.229107 61 1 0 4.752054 -2.349033 -1.602819 62 1 0 3.454009 -3.448541 -2.076945 63 1 0 3.685247 -3.549754 0.299142 64 1 0 3.965689 -1.874321 0.469031 65 1 0 1.210474 -2.154642 2.452011 66 1 0 2.886941 -2.369526 2.294625 67 1 0 1.874838 -3.771491 1.984469 68 1 0 0.574304 -4.102348 0.155576 69 1 0 0.778628 -3.050856 -1.393219 70 1 0 1.848496 -4.254311 -0.761722 71 1 0 -2.125822 5.154840 -0.963523 72 1 0 -1.559877 4.381371 1.329178 73 1 0 -2.125822 5.154840 0.963523 72 1 0 -2.125822 5.154840 0.963523 72 1 0 -2.125822 5.154840 0.963523 72 1 0 -2.125822 5.154840 0.963523 75 1 0 -2.125822 1.183502 76 1 0 -1.206108 0.33849	59	1	0	1 919000	-1 8115/9	-2 601312
6010 3.474612 -1.202736 -3.227167 61 10 4.752054 -2.349033 -1.602819 62 10 3.454009 -3.448541 -2.076945 63 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.304458 1.223711 -1.284220 79 10 -3.714436 0.355407 4.463765 81 10 -3.214271 -1.142968 -3.427851 84 10 -3.91187 -2.054629 -2.159281 85 1 </td <td>60</td> <td>1</td> <td>0</td> <td>3 111000</td> <td>1 202738</td> <td>3 220107</td>	60	1	0	3 111000	1 202738	3 220107
611 0 4.732034 2.2349033 -1.002819 62 10 3.454009 -3.448541 -2.076945 63 10 3.685247 -3.549754 0.299142 64 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.304458 1.223711 -1.284220 79 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 1	61	1	0	J. 444 072	2 340033	1 602810
0210 3.43400 -3.44341 -2.070942 63 10 3.685247 -3.549754 0.299142 64 10 3.965689 -1.874321 0.469031 65 10 1.210474 -2.154642 2.452011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.558877 4.381371 1.329178 73 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 1 <td< td=""><td>62</td><td>1</td><td>0</td><td>3 454000</td><td>-2.349033</td><td>2 076945</td></td<>	62	1	0	3 454000	-2.349033	2 076945
0.3 1 0 3.083247 -3.347734 0.2297142 64 1 0 3.965689 -1.874321 0.469031 65 1 0 1.210474 -2.154642 2.452011 66 1 0 2.886941 -2.369526 2.294625 67 1 0 1.874838 -3.771491 1.984469 68 1 0 0.574304 -4.102348 0.155576 69 1 0 0.778628 -3.050856 -1.393219 70 1 0 1.848496 -4.254311 -0.761722 71 1 0 -2.125822 5.154840 -0.963523 72 1 0 -1.559877 4.381371 1.329178 73 1 0 -1.559877 4.381371 1.329178 73 1 0 -1.58688 1.984909 1.741730 74 1 0 -2.3812751 1.054999 -3.188957 76 1 0 -1.206108 0.338494 -2.833910 77 1 0 -4.304458 1.223711 -1.284220 79 1 0 -1.758409 -0.263880 3.071566 80 1 0 -3.714436 0.355407 4.463765 81 1 0 -5.863144 0.944771 3.363055 82 1 0 -6.040935 0.898490 0.887702 83 1 0 -3.214	63	1	0	3.434009	-3.446341	-2.070945
04 10 3.90308^{+} 1.874321^{+} 0.443901^{+} 65 10 1.210474^{+} 2.154642^{-} 2.452011^{+} 66 10 2.886941^{+} 2.369526^{-} 2.294625^{-} 67 10 1.874838^{-} 3.771491^{-} 1.984469^{-} 68 10 0.574304^{-} 4.102348^{-} 0.155576^{-} 69^{-} 10 0.778628^{-} 3.050856^{-} 1.393219^{-} 70^{-} 10 1.848496^{-} 4.254311^{-} 0.761722^{-} 71^{-} 10 -2.125822^{-} 5.154840^{-} 0.963523^{-} 72^{-} 10 -1.559877^{-} 4.381371^{-} 1.329178^{-} 73^{-} 10 -1.158688^{-} 1.984909^{-} 1.741730^{-} 74^{-} 10 -2.388800^{-} 3.476578^{-} 2.774332^{-} 75^{-} 10 -2.812751^{-} 1.054999^{-} 3.188957^{-} 76^{-} 10 -1.206108^{-} 0.338494^{-} 2.833910^{-} 77^{-} 10 -4.907676^{-} -0.424522^{-} -1.183502^{-} 78^{-} 10 -3.714436^{-} 0.355407^{-} 4.463765^{-} 81^{-} 10 -3.214271^{-} -1.42968^{-} 3.427851^{-} 84^{-} 10 -3.911887^{-} -2.054629^{-} -2.159281^{-} 85^{-} 10 -3.01593^{-} -3.195539^{-} <	64	1	0	3.065680	1 97/201	0.299142
0.51 0 1.210474 -2.134042 2.422011 66 10 2.886941 -2.369526 2.294625 67 10 1.874838 -3.771491 1.984469 68 10 0.574304 -4.102348 0.155576 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.559877 4.381371 1.329178 73 10 -1.58688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -3.214271 -1.142968 -3.2735918 84 10 -3.911887 -2.054629 -2.159281 85 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 <	65	1	0	1 210474	-1.074321	0.409031
60102.880941-2.3093202.294023 67 101.874838-3.7714911.984469 68 100.574304-4.1023480.155576 69 100.778628-3.050856-1.393219 70 101.848496-4.254311-0.761722 71 10-2.1258225.154840-0.963523 72 10-1.1586881.9849091.741730 74 10-2.3888003.476578-2.774332 75 10-2.8127511.054999-3.188957 76 10-1.2061080.338494-2.833910 77 10-4.907676-0.424522-1.183502 78 10-4.3044581.223711-1.284220 79 10-1.758409-0.2638803.071566 80 10-5.8631440.9447713.363055 81 10-5.8631440.9447713.363055 82 10-6.0409350.8984900.887702 83 10-3.214271-1.142968-3.427851 84 10-3.911887-2.054629-2.159281 85 10-2.031593-3.245728 87 10-2.634427-3.951792-1.216246 88 10-3.613264-2.2275751.547964 90 10-3.580656-3.	65	1	0	1.2104/4	-2.134042	2.432011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60	1	0	2.000941	-2.309320	2.294023
6810 0.574304 -4.102348 0.135376 69 10 0.778628 -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 10 -0.909175 -1.962978 -2.735918 86 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89	0/	1	0	1.0/4030	-3.//1491	1.984409
6910 $0.7/8628$ -3.050856 -1.393219 70 10 1.848496 -4.254311 -0.761722 71 10 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 10 -2.031593 -3.195539 -3.245728 87 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 10 -3.613264 -2.227575 1.547964 90 <td>68</td> <td>1</td> <td>0</td> <td>0.574504</td> <td>-4.102348</td> <td>0.155570</td>	68	1	0	0.574504	-4.102348	0.155570
70101.848496-4.254311-0.761722 71 10-2.1258225.154840-0.963523 72 10-1.5598774.3813711.329178 73 10-1.1586881.9849091.741730 74 10-2.3888003.476578-2.774332 75 10-2.8127511.054999-3.188957 76 10-1.2061080.338494-2.833910 77 10-4.907676-0.424522-1.183502 78 10-4.3044581.223711-1.284220 79 10-1.758409-0.2638803.071566 80 10-3.7144360.3554074.463765 81 10-5.8631440.9447713.363055 82 10-6.0409350.8984900.887702 83 10-3.214271-1.142968-3.427851 84 10-3.911887-2.054629-2.159281 85 10-2.031593-3.195539-3.245728 87 10-2.634427-3.951792-1.216246 88 10-1.030531-4.010256-1.144841 89 10-3.580656-3.7071640.667892 92 10-1.628710-2.5967302.293048 93 10-0.314625-2.7199881.339652 94 10	69 70	1	0	0.778628	-3.050856	-1.393219
7110 -2.125822 5.154840 -0.963523 72 10 -1.559877 4.381371 1.329178 73 10 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 10 -2.031593 -3.195539 -3.245728 87 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 10 -3.580656 -3.707164 0.667892 92 10 -1.628710 -2.596730 2.293048 93 10 -0.314625 -2.719988 1.339652 94 <td>70</td> <td>1</td> <td>0</td> <td>1.848496</td> <td>-4.254311</td> <td>-0./61/22</td>	70	1	0	1.848496	-4.254311	-0./61/22
7210 -1.559877 4.381371 1.329178 73 10 -1.158688 1.984909 1.741730 74 10 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 10 -2.031593 -3.195539 -3.245728 87 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 10 -3.580656 -3.707164 0.667892 92 10 -1.628710 -2.596730 2.293048 93 10 -0.314625 -2.719988 1.339652 94 10 -1.378226 -4.129370 1.340216	/1	1	0	-2.125822	5.154840	-0.963523
7310-1.1586881.9849091.741730 74 10-2.388800 3.476578 -2.774332 75 10-2.812751 1.054999 - 3.188957 76 10-1.206108 0.338494 - 2.833910 77 10-4.907676 -0.424522 - 1.183502 78 10-4.304458 1.223711 -1.284220 79 10- 1.758409 - 0.263880 3.071566 80 10- 3.714436 0.355407 4.463765 81 10- 5.863144 0.944771 3.363055 82 10- 6.040935 0.898490 0.887702 83 10- 3.214271 -1.142968 -3.427851 84 10- 3.911887 -2.054629 -2.159281 85 10 -2.031593 -3.195539 -3.245728 87 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 10 -3.613264 -2.227575 1.547964 90 10 -4.076679 -2.246825 -0.135915 91 10 -3.580656 -3.707164 0.667892 92 10 -1.628710 -2.596730 2.293048 93 10 -0.314625 -2.719988 1.339652 94 10	72	1	0	-1.5598//	4.381371	1.329178
7410 -2.388800 3.476578 -2.774332 75 10 -2.812751 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 10 -0.909175 -1.962978 -2.735918 86 10 -2.031593 -3.195539 -3.245728 87 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 10 -3.613264 -2.227575 1.547964 90 10 -4.076679 -2.246825 -0.135915 91 10 -3.580656 -3.707164 0.667892 92 10 -1.628710 -2.596730 2.293048 93 10 -0.314625 -2.719988 1.339652 94	73	l	0	-1.158688	1.984909	1.741730
7510 $-2.812/51$ 1.054999 -3.188957 76 10 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 10 -0.909175 -1.962978 -2.735918 86 10 -2.031593 -3.195539 -3.245728 87 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 10 -3.613264 -2.227575 1.547964 90 10 -3.580656 -3.707164 0.667892 92 10 -1.628710 -2.596730 2.293048 93 10 -0.314625 -2.719988 1.339652 94 10 -1.378226 -4.129370 1.340216	74	1	0	-2.388800	3.476578	-2.774332
7610 -1.206108 0.338494 -2.833910 77 10 -4.907676 -0.424522 -1.183502 78 10 -4.304458 1.223711 -1.284220 79 10 -1.758409 -0.263880 3.071566 80 10 -3.714436 0.355407 4.463765 81 10 -5.863144 0.944771 3.363055 82 10 -6.040935 0.898490 0.887702 83 10 -3.214271 -1.142968 -3.427851 84 10 -3.911887 -2.054629 -2.159281 85 10 -0.909175 -1.962978 -2.735918 86 10 -2.031593 -3.195539 -3.245728 87 10 -2.634427 -3.951792 -1.216246 88 10 -1.030531 -4.010256 -1.144841 89 10 -3.613264 -2.227575 1.547964 90 10 -4.076679 -2.246825 -0.135915 91 10 -3.580656 -3.707164 0.667892 92 10 -1.628710 -2.596730 2.293048 93 10 -0.314625 -2.719988 1.339652 94 10 -1.378226 -4.129370 1.340216	75	l	0	-2.812751	1.054999	-3.188957
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76	1	0	-1.206108	0.338494	-2.833910
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77	1	0	-4.907676	-0.424522	-1.183502
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	1	0	-4.304458	1.223711	-1.284220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	1	0	-1.758409	-0.263880	3.071566
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	1	0	-3.714436	0.355407	4.463765
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	1	0	-5.863144	0.944771	3.363055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	1	0	-6.040935	0.898490	0.887702
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	1	0	-3.214271	-1.142968	-3.427851
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	1	0	-3.911887	-2.054629	-2.159281
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	1	0	-0.909175	-1.962978	-2.735918
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	1	0	-2.031593	-3.195539	-3.245728
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	1	0	-2.634427	-3.951792	-1.216246
89 1 0 -3.613264 -2.227575 1.547964 90 1 0 -4.076679 -2.246825 -0.135915 91 1 0 -3.580656 -3.707164 0.667892 92 1 0 -1.628710 -2.596730 2.293048 93 1 0 -0.314625 -2.719988 1.339652 94 1 0 -1.378226 -4.129370 1.340216	88	1	0	-1.030531	-4.010256	-1.144841
9010-4.076679-2.246825-0.1359159110-3.580656-3.7071640.6678929210-1.628710-2.5967302.2930489310-0.314625-2.7199881.3396529410-1.378226-4.1293701.340216	89	1	0	-3.613264	-2.227575	1.547964
91 1 0 -3.580656 -3.707164 0.667892 92 1 0 -1.628710 -2.596730 2.293048 93 1 0 -0.314625 -2.719988 1.339652 94 1 0 -1.378226 -4.129370 1.340216	90	1	0	-4.076679	-2.246825	-0.135915
92 1 0 -1.628710 -2.596730 2.293048 93 1 0 -0.314625 -2.719988 1.339652 94 1 0 -1.378226 -4.129370 1.340216	91	1	Ő	-3.580656	-3.707164	0.667892
93 1 0 -0.314625 -2.719988 1.339652 94 1 0 -1.378226 -4.129370 1.340216	92	1	Õ	-1.628710	-2.596730	2.293048
94 1 0 -1.378226 -4.129370 1.340216	93	1	Ő	-0 314625	-2.719988	1 339652
······································	94	1	0	-1 378226	-4 129370	1 340216
	74	1	0	1.370220	4.129370	1.540210

Table S7b. Coordinates for the optimized geometry of [Ni^{III}(O₂)(L2)]⁺:

Standard Orientation: _____ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Ζ _____ 0 4.367224 -1.598674 -0.367090 6 7 6 3.735784 -1.363536 -1.608647 2.433011 -0.851670 -1.688947 0 1.769325 -0.590800 -0.540813 0 2.452904 -0.828844 0.840986 6 7 0 3.739817 -1.332388 0.860735 1.405529 -0.347257 2.291375 -0.160965 0.264236 1.758738 -1.368500 -0.639074 2.110495 -2.147107 -1.057316 0.809277 -1.619328 -0.742138 -0.440571 0 -2.256262 -1.096420 -1.592847 0 -3.467339 -1.789994 -1.529342 -4.012520 -2.121230 -0.286022 0 -3.350893 -1.761960 0.890113 6 0 -0.483303 1.661596 2.243006 0 -0.139222 2.828964 1.275251 0 -0.898591 2.771282 -0.087744 -0.367472 1.788704 -1.087276 0.889479 2.323629 -1.685436 -1.337575 1.703787 -2.197261 -0.013774 0.139071 -0.177909 0.281506 -0.806708 0.419027 0.876369 0.656323 0.360138 5.375512 -1.992153 -0.361493 4.272302 -1.582359 -2.522803 1.963448 -0.676637 -2.647181 4.249933 -1.509346 1.798212 1.267927 -1.223172 2.958741 1.942904 0.441694 2.858462 -2.066410 -0.177628 2.842049 -1.020649 -1.574107 2.598220 -1.830348 -0.885569 -2.558254 -3.975351 -2.081120 -2.439694 -4.947297 -2.664211 -0.234431 -3.772882 -2.023674 1.852164 -1.577338 1.799505 2.391028 0 -0.014042 1.827299 3.236072 0 0.954109 2.956350 1.141141 -0.486802 3.749022 1.795357 2.560783 -1.966674 0.145553 -0.874360 3.792587 -0.533995

43	1	0	1.685190	2.485341	-0.931199	
44	1	0	1.290456	1.615868	-2.439426	
45	1	0	0.723375	3.301599	-2.191629	
46	1	0	-0.966463	1.025587	-2.992585	
47	1	0	-2.340628	1.399448	-1.838363	
48	1	0	-1.488781	2.698607	-2.675760	

Table S7c. Coordinates for the optimized geometry of $[Ni^{III}(L2)(OOH)]^{2+}$

Standard Orientation:

Center	Atomic	Atomic	Coo	rdinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	4.406962	-0.122367	-1.802271
2	6	0	4.001328	1.181355	-1.452436
3	6	0	2.763534	1.355509	-0.823852
4	7	0	1.942218	0.302834	-0.529686
5	6	0	2.340288	-0.967055	-0.850515
6	6	0	3.564001	-1.205609	-1.497035
7	6	0	1.445623	-2.117101	-0.410378
8	7	0	0.041719	-1.667092	-0.119262
9	6	0	-0.853542	-1.835057	-1.326148
10	6	0	-2.094357	-0.964719	-1.198363
11	7	0	-1.940691	0.199761	-0.493219
12	6	0	-2.998820	1.047055	-0.359179
13	6	0	-4.247504	0.770218	-0.931013
14	6	0	-4.409014	-0.421808	-1.663597
15	6	0	-3.317427	-1.301934	-1.793777
16	6	0	-0.565897	-2.363775	1.077631
17	6	0	0.152786	-2.118150	2.427560
18	6	0	0.860993	-0.762886	2.647506
19	7	0	0.108580	0.477374	2.206694
20	6	0	0.925518	1.683681	2.609232
21	6	0	-1.240346	0.565229	2.869815
22	28	0	0.003401	0.410001	0.133647
23	8	0	0.022131	2.655044	-0.149862
24	8	0	-0.793797	3.156259	-1.141367
25	1	0	5.357588	-0.289685	-2.299431
26	1	0	4.626523	2.041738	-1.664884
27	1	0	2.412771	2.342087	-0.543864
28	1	0	3.855620	-2.220347	-1.751043
29	1	0	1.451292	-2.914201	-1.165205
30	1	0	1.867850	-2.555259	0.500517
31	1	0	-1.134608	-2.888996	-1.455041
32	1	0	-0.283215	-1.538877	-2.217068
33	1	0	-2.834823	1.953277	0.211481
34	1	0	-5.067950	1.467871	-0.803506
35	1	0	-5.365158	-0.663937	-2.117528
36	1	0	-3.418776	-2.230892	-2.346342

37	1	0	-1.601734	-2.017982	1.137082
38	1	0	-0.602647	-3.446485	0.885341
39	1	0	0.917272	-2.887679	2.594958
40	1	0	-0.593567	-2.283210	3.213878
41	1	0	1.083842	-0.670931	3.721190
42	1	0	1.822190	-0.739189	2.123369
43	1	0	1.915717	1.633656	2.148059
44	1	0	0.422224	2.599861	2.289898
45	1	0	1.048731	1.715149	3.700122
46	1	0	-1.720965	1.508305	2.594628
47	1	0	-1.880128	-0.260963	2.555792
48	1	0	-1.133195	0.537665	3.962941
49	1	0	-0.534289	4.112918	-1.278402

 Table S8. Excitation energy and Oscillator strength

State	Energy (cm ⁻¹)	Waveler (nm)	ngth fosc
1	11998.1	833.5	0.000729146
2	12490.0	800.6	0.001259139
3	12873.3	776.8	0.000102903
4	13331.0	750.1	0.001201729
5	15046.8	664.6	0.000249906
6	15123.7	661.2	0.000235045
7	11757.1	850.6	0.001175879
8	12926.6	773.6	0.001309037
9	15163.6	659.5	0.000475987
10	14219.7	703.3	0.000761313
11	14867.2	672.6	0.001581364
12	15813.8	632.4	0.002786700
13	14817.4	674.9	0.010707375

 Table S9. Calculated energy for optimized structures:

	Energy (ev)
$[(L2Ni^{III})_2(\mu-O)_2]^{2+}$	-61252.83
$\left[Ni^{III}(L2)(OOH)\right]^{2+}$	-32680.87
$[Ni^{III}(O_2)(L2)]^+$	-32653.66

Reply for Check CIF alerts for complex 2:

Alert Level B:

PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta(Min) 13 Note

Authors Response: The unit cell is reasonable large and these low angle reflections are probably missing due to the beam stop.

Alert Level C:

PLAT052_ALERT_1_C Info on Absorption Correction Method Not Given Please Do ! PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds 0.00635 Ang. PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 11.954 Check PLAT906_ALERT_3_C Large K Value in the Analysis of Variance 2.990 Check PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 3 Report PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers 1 Check PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density. 0 Info

Authors Response: RIGU restraints were applied to atoms in the disordered chains. Several of the atoms were still not ideally shaped, however, this does not indicate an incorrect atom-type assignment.

Alert Level G:

PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large 23.40 Why ? PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature (K) 293 Check PLAT794_ALERT_5_G Tentative Bond Valency for Ni1 (II) . 1.93 Info PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 1496 Note PLAT950_ALERT_5_G Calculated (ThMax) and CIF-Reported Hmax Differ 2 Units PLAT956_ALERT_1_G Calculated (ThMax) and Actual (FCF) Hmax Differ 2 Units

Authors Response: Crystals diffracted extremely weakly. Multiple attempts were made to grow better diffracting crystals. Data was collected at three different facilities with radiation sources of Mo, Cu and synchrotron. All results were consistent with the model in this report (from the Cu data collection), however, all yielded serious problems due to weak diffraction and disorder in the atom positions.