Confinement of Pt nanoparticles in cage-type mesoporous silica SBA-16 as efficient catalysts for toluene oxidation: The effect of carboxylic groups on the mesopore surface

Hung-Chi Wua, Tse-Ching Chenb, Canggih Setya Budi c, Pin-Hsuan, Huanga Ching-Shiun Chen,a,b* and Hsien-Ming Kaoc*

aCenter for General Education, Chang Gung University, 259, Wen-Hua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China.

bDepartment of Pathology, Chang Gung Memorial Hospital, 5, Fusing St., Guishan Dist., Taoyuan City 33302, Taiwan, Republic of China.

cDepartment of Chemistry, National Central University, Chung-Li, 32001, Taiwan, Republic of China.

*Corresponding authors
Fig. S1. (A) Small-angle XRD patterns of as-synthesized S16C with and without template removal and (B) TEM image of S16C after template removal
Fig. S2. \(\text{H}_2 \)-TPR profiles of Pt(x)@S16C and Pt(x)@S16 catalysts after calcination in air at 673 K for 5 h, where x = 0.5 and 1.0 wt.\%.
Fig. S3 Zeta potential of S16C and S16 at different pH values.
Fig. S4. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) curves of the 1.0 wt% Pt$^{4+}$ impregnated on S16C and S16C support in an air stream.
Fig. S5. IR spectra of (a) toluene adsorption and (b) CO adsorption on toluene-precovered Pt(1.0)@S16C and Pt(1.0)@S16 catalysts. The adsorption of toluene was performed by injecting 5 μL of liquid at room temperature.
Fig. S6. Comparison of the reaction rates for toluene oxidation for the Pt(0.5)@S16C, Pt(0.5)@S15C and Pt(0.5)@S15 catalysts as a function of temperature.