Supporting information:

Ultra small subnano TiO$_x$ cluster as an excellent co-catalyst for photocatalytic degradation of tetracycline on plasmonic Ag/AgCl

Wenlu He, a Kaiwen Wang, b Zhu Zhu, b Hanjun Zou, c Kai Zhou, c Zhao Hu, d Youyu Duan, a Yajie Feng, a Liyong Gan, a Kangle Lv, d Cong Wang, *b Xiaodong Han, *b and Xiaoyuan Zhou*a,c

[a] College of Physics, Chongqing University, Chongqing 401331, P. R. China
[b] Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, P. R. China
[c] Analytical and Testing Center, Chongqing University, Chongqing 401331, P. R. China
[d] College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, P. R. China

*Corresponding authors Emails: smartswang@bjut.edu.cn (C. W); xdhan@bjut.edu.cn (X. H); xiaoyuan2013@cqu.edu.cn (X. Z).

This file includes:

Fig. S1 (a) XRD patterns of TiO$_x$@Ag/AgCl loaded with different concentrations of TiO$_x$ from 0.1 to 5 times of the as-prepared fresh sample and the pristine sample; (b) XRD patterns of the as-prepared fresh TiO$_x$@Ag/AgCl and the used TiO$_x$@Ag/AgCl after 10 cycles.

Fig. S2 PL spectra of the as-prepared TiO$_x$@Ag/AgCl, 0.1TiO$_x$@Ag/AgCl and the synthesized Ag/AgCl.

Fig. S3. FTIR spectra of the as-prepared TiO$_x$@Ag/AgCl and the synthesized Ag/AgCl

Fig. S4 EIS nyquist plots of Ag/AgCl and TiO$_x$@Ag/AgCl
Fig. S5 Absorption spectrums of the degradation of TC with the presence of TiO$_x$@Ag/AgCl.

Fig. S6 Dependence of the TC adsorption efficiency on the TiO$_x$@Ag/AgCl in the dark.

Fig. S7 HAADF images of TiO$_x$@Ag/AgCl exposed under different time of electron beam irradiation a) 0 s; b) 10 s; c) 20 s; d) 30 s; e) 40 s; f) 50 s.

Fig. S8 Effect of different scavengers on photocatalytic degradation.

Fig. S9 Effect of different scavengers on photocatalytic degradation ESR signals of DMPO-O$_2$• and DMPO-HO• of TiO$_x$@Ag/AgCl. scavengers on photocatalytic degradation.

Fig. S10 LC-MS analysis of TC and its intermediates in the photodegradation reaction.

Fig. S11 Proposed possible pathways of photocatalytic degradation of TC.

Table. S1 EDX result of TiO$_x$@Ag/AgCl
Table. S2 Corresponding reaction rate constant k of TC of various catalyst
Fig. S1. (a) XRD patterns of TiO$_x$@Ag/AgCl loaded with different concentrations of TiO$_x$ from 0.1 to 5 times of the as-prepared fresh sample and the pristine sample. (b) XRD patterns of the as-prepared fresh TiO$_x$@Ag/AgCl and the used TiO$_x$@AgCl after 10 cycles.
Fig. S2. PL spectra of TiO$_x$@Ag/AgCl and the synthesized Ag/AgCl.
Fig. S3. FTIR spectra of the as-prepared TiO$_x$@Ag/AgCl and the synthesized Ag/AgCl.
Fig. S4. EIS nyquist plots of Ag/AgCl and TiO$_x$@Ag/AgCl in 0.5 M Na$_2$SO$_4$ aqueous solution in the dark.
Fig. S5. Absorption spectrums of the degradation of TC with the presence of TiO$_x$@Ag/AgCl.
Fig. S6. Dependence of the TC adsorption efficiency on the TiO$_x$@Ag/AgCl in the dark
Fig. S7. HAADF images of TiO$_x$@Ag/AgCl exposed under different time of electron beam irradiation a) 0 s; b) 10 s; c) 20 s; d) 30 s; e) 40 s; f) 50 s.
Fig. S8. Effect of different scavengers on photocatalytic degradation.
Fig. S9. ESR signals of DMPO-O_2^\cdot and DMPO-HO$^\cdot$ of TiO$_x$@Ag/AgCl.
Fig. S10. LC-MS analysis of TC and its intermediates in the photodegradation reaction
Fig. S11. Proposed possible pathways of photocatalytic degradation of TC
Table S1 EDX result of TiO$_x$@Ag/AgCl

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Fraction (%)</th>
<th>Mass Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag (L)</td>
<td>49.51</td>
<td>24.89</td>
</tr>
<tr>
<td>Cl (K)</td>
<td>50.09</td>
<td>0.27</td>
</tr>
<tr>
<td>Ti (K)</td>
<td>0.41</td>
<td>74.84</td>
</tr>
</tbody>
</table>
Table S2 Corresponding reaction rate constant (k) of TC and MO of various catalyst

<table>
<thead>
<tr>
<th>Material structure</th>
<th>Light source</th>
<th>Light condition</th>
<th>Organic pollutants</th>
<th>Degradation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiOx@Ag/AgCl (This work)</td>
<td>300 W Xe lamp</td>
<td>AM 1.5G</td>
<td>tetracycline</td>
<td>0.49247 min⁻¹</td>
</tr>
<tr>
<td>N-doped BiOIO₃</td>
<td>LED light</td>
<td>357 nm</td>
<td>tetracycline</td>
<td>0.04025 min⁻¹</td>
</tr>
<tr>
<td>BiVO₄ (0 4 0)-Ag@CdS</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0875 min⁻¹</td>
</tr>
<tr>
<td>Cu/Cl-g-C₃N₄</td>
<td>300W Xe lamp</td>
<td>≥400 nm</td>
<td>tetracycline</td>
<td>0.0271 min⁻¹</td>
</tr>
<tr>
<td>AgI/Bi₂WO₆</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.075 min⁻¹</td>
</tr>
<tr>
<td>CoO/g-C₃N₄</td>
<td>300W Xe lamp</td>
<td>≥400 nm</td>
<td>tetracycline</td>
<td>0.0173 min⁻¹</td>
</tr>
<tr>
<td>LDH-Ag₂O/Ag</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0184 min⁻¹</td>
</tr>
<tr>
<td>α-Fe₂O₃@g-C₃N₄</td>
<td>100W LED lamp</td>
<td>420 nm</td>
<td>tetracycline</td>
<td>0.042 min⁻¹</td>
</tr>
<tr>
<td>Fe-doped surface-alkalinized g-</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0164 min⁻¹</td>
</tr>
<tr>
<td>C₃N₄/strontium ferrite/diatomite (N-TSD)</td>
<td>150W Xe lamp</td>
<td>≥400 nm</td>
<td>tetracycline</td>
<td>0.0165 min⁻¹</td>
</tr>
<tr>
<td>Bi₂WO₆/CuBi₂O₄</td>
<td>300W Xe lamp</td>
<td>≥400 nm</td>
<td>tetracycline</td>
<td>0.0393 min⁻¹</td>
</tr>
<tr>
<td>NiFe₂O₄/C yolk–shell nanospheres</td>
<td>800W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.44295 min⁻¹</td>
</tr>
<tr>
<td>CQDs/ZnO@HNTs</td>
<td>500W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0275 min⁻¹</td>
</tr>
<tr>
<td>carbon-doped Bi₂MoO₆</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0399 min⁻¹</td>
</tr>
<tr>
<td>(Mo,C)-TiO₂/FTO</td>
<td>500W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0221 min⁻¹</td>
</tr>
<tr>
<td>Poly (triazine imide) hollow tube (PTI)/ZnO heterojunction</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.034 min⁻¹</td>
</tr>
<tr>
<td>CNT/LaVO₄</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0098 min⁻¹</td>
</tr>
<tr>
<td>Bi₂S₃ @Bi₂WO₆ /WO₃</td>
<td>400W Xe lamp</td>
<td>≥420 nm</td>
<td>tetracycline</td>
<td>0.0168 min⁻¹</td>
</tr>
<tr>
<td>Material</td>
<td>Light Source</td>
<td>Wavelength (nm)</td>
<td>Incident Light</td>
<td>Time Constant (min⁻¹)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Bi-CNNS</td>
<td>300W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.09458</td>
</tr>
<tr>
<td>PoPD/AgCl-35/CN</td>
<td>250W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.0375</td>
</tr>
<tr>
<td>MCU-C$_2$N$_4$</td>
<td>300W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.022</td>
</tr>
<tr>
<td>WO$_3$/Bi$_2$O$_3$/Cl$_2$</td>
<td>300W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.0046</td>
</tr>
<tr>
<td>QDs/BiOCl/BiOBr</td>
<td>250W Xe lamp</td>
<td>≥400</td>
<td>tetracycline</td>
<td>0.0133</td>
</tr>
<tr>
<td>Bi$_2$MoO$_6$/NiTiO$_3$</td>
<td>300W Xe lamp</td>
<td>≥400</td>
<td>tetracycline</td>
<td>0.0243</td>
</tr>
<tr>
<td>BiVO$_4$/N-CQDs/Ag$_3$PO$_4$</td>
<td>300W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.07097</td>
</tr>
<tr>
<td>Bi$_2$Zr$_2$O$_7$</td>
<td>Xe lamp</td>
<td>Simulated sunlight</td>
<td>tetracycline</td>
<td>0.00868</td>
</tr>
<tr>
<td>Eu-CN@BiVO$_4$</td>
<td>300W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.06528</td>
</tr>
<tr>
<td>Ag$_0$(NP)/TiO$_2$</td>
<td>UV-A lamp</td>
<td>= 360</td>
<td>tetracycline</td>
<td>0.0112</td>
</tr>
<tr>
<td>C-doped TiO$_2$</td>
<td>25W flexible white visLED light</td>
<td>= 450</td>
<td>tetracycline</td>
<td>0.0099</td>
</tr>
<tr>
<td>NiS and MoS$_2$ nanosheet comodified graphitic C$_3$N$_4$</td>
<td>Xe lamp</td>
<td>≥400</td>
<td>tetracycline</td>
<td>0.0254</td>
</tr>
<tr>
<td>AgBr/CuBi$_2$O$_4$</td>
<td>300W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.03511</td>
</tr>
<tr>
<td>FeNi$_3$/SiO$_2$/CuS</td>
<td>18W UV lamp</td>
<td>= 254</td>
<td>tetracycline</td>
<td>0.0257</td>
</tr>
<tr>
<td>α-Bi$_2$O$_3$/g-C$_3$N$_4$</td>
<td>300W Xe lamp</td>
<td>≥400</td>
<td>tetracycline</td>
<td>0.01223</td>
</tr>
<tr>
<td>β-Bi$_2$O$_3$@g-C$_3$N$_4$</td>
<td>250W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.0311</td>
</tr>
<tr>
<td>CdS/SnO$_2$</td>
<td>300W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.0143</td>
</tr>
<tr>
<td>CdS/Bi$_2OCl$</td>
<td>250W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.0643</td>
</tr>
<tr>
<td>BiOBr/CTF-3D</td>
<td>500W Xe lamp</td>
<td>≥420</td>
<td>tetracycline</td>
<td>0.04122</td>
</tr>
<tr>
<td>Material</td>
<td>Light Source</td>
<td>Wavelength</td>
<td>Tetracycline (min⁻¹)</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>RGO-ZnTe</td>
<td>Solar simulator</td>
<td>AM 1.5G</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>potassium (K)-doped porous ultrathin g-C3N4</td>
<td>300W Xe lamp</td>
<td>≥300 nm</td>
<td>0.0282</td>
<td></td>
</tr>
<tr>
<td>In₂S₃/BiPO₄</td>
<td>350W Xe lamp</td>
<td>≥400 nm</td>
<td>0.0145</td>
<td></td>
</tr>
<tr>
<td>carbon dots/NiCo₂O₄</td>
<td>300W Xe lamp</td>
<td>≥420 nm</td>
<td>0.02134</td>
<td></td>
</tr>
<tr>
<td>In₂O₃</td>
<td>250W Xe lamp</td>
<td>≥420 nm</td>
<td>0.0073</td>
<td></td>
</tr>
<tr>
<td>Bi₂WO₆/Ag₂O/CQDs</td>
<td>500W Xe lamp</td>
<td>≥400 nm</td>
<td>0.035</td>
<td></td>
</tr>
</tbody>
</table>

References

