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Table S1 Results of hydrodeoxygenation of ethyl stearate on various Re-modified Ru(1)/TiO,

catalysts at low conversion levels

Entry Catalys Time  Conversion Selectivity (%) @ bii::::b Reacti .on rate ©
(min) (%) CisH3;OH  n-CsHzs  n-CigHsg %) (mol min! g,
1 Ru(1) 60 19.3 26.4 28.7 16.9 72.0 53.6
2 Ru(1)Re(0.5) 45 20.3 35.0 22.6 23.6 81.2 75.2
3 Ru(D)Re(l) 30 25.5 30.6 22.0 30.7 83.3 142
4 Ru(1)Re(2) 20 226 41.4 17.9 31.6 90.9 188
5 Ru(1)Re(5) 20 24.0 55.7 12.8 30.2 98.7 200
6 Ru(1)Re(10) 10 24.8 38.2 15.7 323 86.2 413
7 Ru(1)Re(15) 5 16.6 38.5 213 36.3 96.1 553
8 Re(10) 120 18.6 34.0 0.6 34 38.0 25.8

Reaction conditions: 1 mmol ethyl stearate, 60 mg catalyst (reduced at 300 °C), 10 mL hexane, 3
MPa H,, 220 °C.

a. Small amounts of other alkane products of n-C;sH3; and n-C ¢H34 were detected to form.

b. The amount of CgH3,0H, n-C7H3, n-C;gH3g against the amount of ethyl stearate consumed. A
deviation from 100% carbon balance may be due to the undesired consumption of the
substrate of ethyl stearate via transesterification with a product of 1-octadecanol producing a
larger molecule that cannot be detected by the present GC analysis.

¢. Amount of ethyl stearate consumed per 1 min per 1 g catalyst.

Table S2 Hydrodeoxygenation of ethyl stearate on Ru(1)Re(10)/TiO, catalyst reduced at different

temperatures
Temperature Conversion Selectivity (%) *
0 o Cig/Ci7P
C) (7o) C3H3,0H n-Cy7Hz¢ n-CgHag
200 98.5 n.d. 23.0 62.0 2.7
300 99.9 n.d. 222 69.7 32
400 96.4 5.6 27.4 64.2 23

Reaction conditions:1 mmol ethyl stearate, 60 mg catalyst, 10 mL hexane, 3 MPa H,, 220 °C, 2 h.
a. Small amounts of other alkane products of n-C,sH;, and n-C,¢H34 were detected to form. “n.d.”
indicates “not detected”.

b. n-CigHj3g/ n-C7Hzg



Table S3 Results of hydrodeoxygenation of ethyl stearate on different catalysts

Conversion Selectivity (%) 2
Entry Catalyst
(%) Ci3H3;0H n-Cy7Hse n-CigHsg
1 5%Ru/CP 14.0 n.d. 99.0 n.d.
2 5%Ru/Al,O5P 95.0 n.d. 93.5 1.6
3 Ru(1)Re(10)/TiO, 99.9 n.d. 22.2 69.7

Reaction conditions: 1 mmol ethyl stearate, 60 mg catalyst, 10 mL n-hexane, 3 MPa H,, 220 °C.
a. Small amounts of other alkane products of n-C,sH;, and n-C¢H34 were detected to form. “n.d.”

indicates “not detected”.
b. The commercial Ru/C and Ru/Al,O; were obtained from Wako Co. Ltd. The Ru content was 5

wt%.

Table S4 Hydrodeoxygenation of a possible intermediate of 1-octadecanol (C;sH3;0H) on various

catalysts at low conversion levels

Conversion Selectivity (%)
Catalyst . Cig/Ci7°
(A)) n-C7H36 n-CgHsg
Ru(1)Re(1) 35.7 34.1 57.9 170
Ru(1)Re(2) 72.6 26.5 65.2 2.46
Ru(1)Re (10) 83.2 18.7 74.4 3.99

Reaction conditions: 2 mmol 1-octadecanol, 30 mg catalyst (reduced at 300 °C), 10 mL hexane, 3
MPa H,, 0.5 h, 220 °C.

a. Some minor amount of other productions (C;sH;, and C;¢Hs4) were detected.

b. n-CgH;zg/ n-C7Hzg

Table S5 Hydrodeoxygenation of a possible intermediate of stearic acid (C;sH3;sCOOH) on the

selected catalysts

time Conversion Selectivity (%)?
Entry Catalyst C4/Cy7?
(h) (%) CisH3,OH  n-Ci7H3s  n-CigHsg
1 Ru(1) 2 59.6 33.7 17.9 5.4 0.30
2 Ru(1)Re(10) 0.5 93.6 63.4 9.5 13.9 1.46
3 Ru(1)Re(10) 2 99.9 n.d. 273 52.7 1.93

Reaction conditions: 1 mmol Stearic acid, 60 mg catalyst (reduced at 300 °C),10 mL hexane, 3
MPa H,, 220 °C.

a. Some minor amount of other productions (C;sH3, and CsHs,) were detected.

b. n-C;gH;3g/ n-C7H3¢



Table S6 Results of hydrodeoxygenation of ethyl stearate over Ru(1)Re(10)/TiO, catalyst

Catalyst Conversion Selectivity (%)°
Entry . n-CisHsg/ n-Ci7Hz6
(mg) (%) CisH3;OH  n-Cy7Hzs  n-CigHag
1 30 45.4 22.3 22.9 54.5 2.38
2 45 65.7 18.0 24 .4 55.3 2.13
60 99.9 n.d 22.2 69.7 3.15

Reaction conditions: 1 mmol ethyl stearate, Ru(1)Re(10)/TiO, (reduced at 300 °C), 10 mL hexane,
3 MPa H,, 220 °C, 2 h.
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Fig. S1 (a) XRD patterns of fresh and used catalysts and (b) TGA of Ru(1)Re(10)/TiO, used five

times.
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Fig. S2 TEM images and histograms of metal particle size distribution of (a) Ru(1)/TiO,, (b)
Re(10)/TiO; and (c) Ru(1)Re(10)/TiO, catalysts reduced at 300 °C.
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Fig. S3 XRD patterns of Ru(1)/TiO,, Re(10)/TiO, and Ru(1)Re(10)/TiO, catalysts reduced at 300

°C.
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Fig. S4 H,-TPD results of (a) Ru(1)/TiO,, (b) Re(10)/TiO;, and (c¢) Ru(1)Re(10)/TiO, catalysts.
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Fig. SS§ NH;-TPD profiles of TiO,-supported catalysts. Each TPD desorption profile is divided
into four regions depending on desorption temperatures.



