Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information to:

Self-tuned properties of Cu-ZnO catalysts for hydroxymethylfurfural hydrodeoxygenation towards DMF production

Magdalena Brzezinska^{a,b}, Nicolas Keller ^b and Agnieszka M. Ruppert*^a

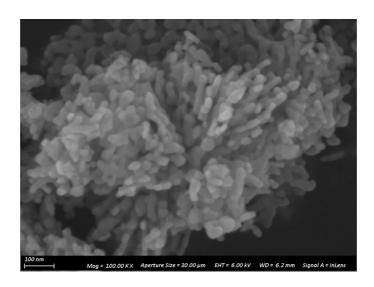

- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland.
 e-mail: agnieszka.ruppert@p.lodz.pl; Fax: +48426313128; Tel: +48426313106
- b. Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, ICPEES, CNRS, University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France

Table S1. ZnO cell parameters obtained by Rietvelt refinement of X-ray diffractograms of CuZnO(I) and CuZnO(P) catalysts during the test cycling procedure.

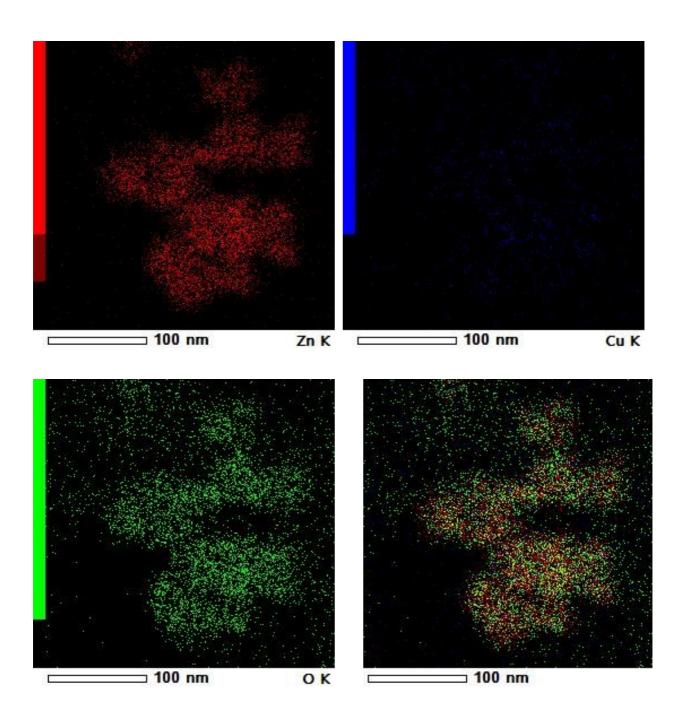

Sample	Cell parameter a [Å]	Cell parameter c [Å]
ZnO	3.249(1)	5.203(1)
CuZnO(I)	3.249(1)	5.204(1)
CuZnO(I)-used	3.248(1)	5.205(1)
CuZnO(I)-used-(ox)	3.249(1)	5.205(1)
CuZnO(P)	3.248(1)	5.206(1)
CuZnO(P)-used	3.249(1)	5.205(1)
CuZnO(P)-used-(ox)	3.249(1)	5.205(1)

Table S2. Mean particle size of the Cu phase in the CuZnO(I) catalyst during the test cycling procedure (tests 1 to 5).

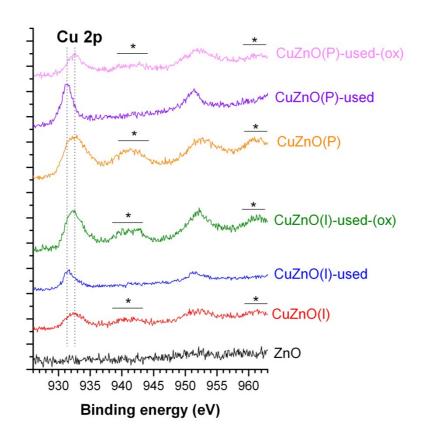

Sample	Phase	Mean particle size [nm]
CuZnO(I)	CuO	21
CuZnO(I)-used (ie. used after 1st test)	Cu	28
CuZnO(I)-used-(ox) (ie. used after 1st test and reoxidized)	CuO	11
Used after 2 nd test	Cu	32
Used after 2 nd test and reoxidized	CuO	12
Used after 3 rd test	Cu	23
Used after 3 rd test and reoxidized	CuO	12
Used after 4 th test	Cu	27
Used after 4 th test and reoxidized	CuO	12
Used after 5 th test	Cu	28

Figure S1. SEM image of the bare ZnO support.

Figure S2. Mapping scanning transmission electron microscopy (STEM) imaging recorded on the CuZnO(P) catalyst prepared *via* the photo-assisted way: (red) Zn K, (blue) Cu K, (green) O K and (overlay).

Figure S3. Influence of the CuZnO catalyst preparation method and of the treatment applied (fresh, used and used catalyst after reoxidation step) on the Cu $2p_{3/2}$ and $2p_{1/2}$ orbital region of the XPS spectra recorded for both series of catalysts. (*) corresponds to Cu²⁺ satellites.