Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Effects of alumina morphology on dry reforming of methane over Ni/Al₂O₃ catalysts

Dongyang Shen, Miaomiao Huo, Lin Li*, Shuai Lyu, Juhan Wang, Xiaoyan Wang, Yuhua Zhang, Jinlin Li*

Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China

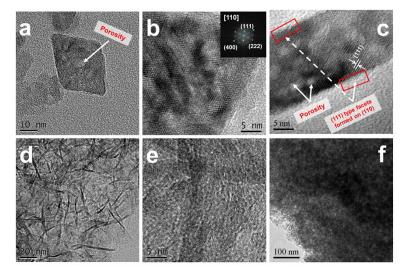


Fig. S1 TEM images of as-prepared supports: (a, b, c) AI_2O_3 -S, (d, e) AI_2O_3 -F and (f) AI_2O_3 -P.

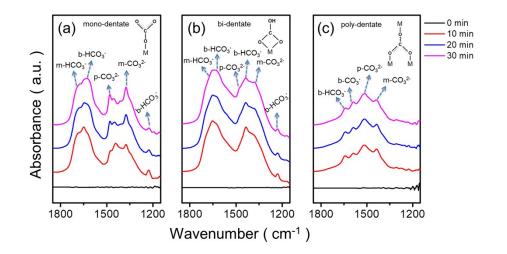


Fig. S2 In situ DRIFT spectra of CO₂ adsorption at 35 °C for 30 min: (a) AI_2O_3 -S, (b) AI_2O_3 -F and (c) AI_2O_3 -P.

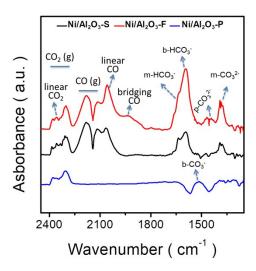


Fig. S3 In situ DRIFT spectra of CO₂ desorption in N₂ flow at 400 °C: Ni/Al₂O₃-S (black), Ni/Al₂O₃-F (red) and Ni/Al₂O₃-P (blue). CO₂ was adsorbed at 400 °C for 30 min before desorption process.