† Electronic Supporting Information

Novel Nickel Nanoparticles Stabilized by Imidazolium-Amidinate Ligands for Selective Hydrogenation of Alkynes

Angela M. López-Vinasco,^[a] Luis M. Martínez-Prieto,*^[a,b] Juan M. Asensio,^[a] Pierre

Lecante, ^[c] Bruno Chaudret, ^[a] Juan Cámpora, ^[d] and Piet W. N. M. van Leeuwen* ^[a]

[a] LPCNO; Laboratoire de Physique et Chimie des Nano-Objets, UMR5215 INSA-CNRS-UPS, Institut des Sciences Appliquées, 135, Avenue de Rangueil, F-31077 Toulouse, France.

[b] ITQ; Instituto de Tecnología Química, CSIC-Universitat Politécnica de València. Avda. Los Naranjos S/N, 42006 Valencia, Spain.

[c] CEMES; Centre d'Elaboration de Matériaux et d'Etudes Structurales, CNRS, 29 Rue J. Marvig, F-31055 Toulouse, France

[d] IIQ; Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla. C/ Américo Vespucio, 49, 41092 Sevilla, Spain.

e-mails: luismiguel.martinez@csic.es vanleeuw@insa-toulouse.fr.

Table of Content

S1. TEM images of Ni@L3	2
S2. HRTEM image of Ni@L1	2
S3. WAXS analysis of Ni@L1, Ni@L2 and Ni@L3	3
S4. AAS analysis for Ni@L1, Ni@L2 and Ni@L3	3
S5. Catalytic profile for semi-hydrogenation of 3-hexyne using Ni@L2 and Ni@L3	4
S6. TEM images after catalytic recycling experiments with Ni@L1	4
S7. NMR spectrum after hydrogenation of 3-hexyne with Ni@L1	5

S1. TEM of Ni@L3

Figure S1. TEM images of Ni@L3 showing the polydispersity of the nanoparticles.

S2. HRTEM of Ni@L1

Figure S2. HRTEM image of **Ni@L1** (left, right bottom) and the Fourier Transform Analysis (right, top) with planar reflections.

S3. WAXS analysis of Ni@L1, Ni@L2 and Ni@L3.

Figure S3. WAXS analysis of Ni@L1 (blue), Ni@L2 (green) and Ni@L3 (red), which shows crystalline Ni NPs (*fcc*) with a coherence length close to 3 nm.

S4. AAS analy	sis for	Ni@L1,	Ni@L2	and	Ni@L3
---------------	---------	--------	-------	-----	-------

Table S1. Composition of Ni@L									
Ni NP ^[a]	Size (nm)	% Ni ^[a]	Ni:L Ratio	Ni _x :L _y ^[b]	Ni(s) ^[c]	Ni(s) _x /L _y			
Ni@L1	2.8 (0.4)	75.9	25:1	1070:43	401	9.3			
Ni@L2	2.8 (0.5)	71.1	21:1	1070:52	401	7.7			
Ni@L3	3.4 (2.0)	45.5	7:1	1865:269	597	2.2			

[a] % of Ni obtained by Atomic Absorption Spectroscopy (AAS) [b] The total number of atoms is determined, calculating the unit cell of Ni (fcc) per NP base on the diameter measured by TEM. [c] Number of surface atoms. Approximate values obtained from *ChemCatChem* **2011**, *3*, 1413-1418.

S5. Catalytic profile for semi-hydrogenation of 3-hexyne using Ni@L2 and Ni@L3

Figure S4. Time course of the product yield in the semi-hydrogenation of 3-hexyne using **Ni@L2** (left) and **Ni@L3** (right) as catalysts. Reaction conditions: 0.5 mmol of 3-hexyne, 3 mmol% catalyst, 0.75 mL toluene, 1 bar H₂.

S6. TEM after catalytic recycling experiments with Ni@L1

After the recycling experiments in the semi-hydrogenation of 3-hexyne, the isolate nanoparticles were analyzed by TEM according to the above mentioned procedure.

Figure S5. TEM images of Ni@L1 after catalytic recycling (after 3 cycles) experiments.

Figure S6. TEM images of Ni@L1 after catalytic recycling (after 5 cycles) experiments.

S6. NMR

Figure S7. ¹H NMR spectrum after hydrogenation of 3-hexyne with **Ni@L1 (**5h, 1 bar H₂, r.t., toluene).