Supporting information

A viscosity-sensitive iridium(III) probe for lysosomal microviscosity quantification and blood viscosity detection in diabetic mice†

Pingyu Zhang,*a Haijie Chen,a Huaiyi Huang,b Kangqiang Qiu,a,c Changxuan Zhang,a Hui Chao*a,c and Qianling Zhang*a

a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.

b School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Guangzhou 510275, China.

c School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
Contents

Fig. S1. The MS spectrum of 1.

Fig. S2. The 1H NMR spectrum of 1.

Fig. S3. The 600 MHz cosy NMR spectrum of 1.

Fig. S4. The 13C NMR spectrum of 1.

Fig. S5. The stability of 1 for 72 h.

Fig. S6. The emission spectra of 1 in the presence of biological molecules.

Fig. S7. The emission intensity of 1 in the solution with different pH values.

Fig. S8. The ESI-MS spectrum of 2.

Fig. S9. The 1H NMR spectrum of 2.

Fig. S10. The 13C NMR spectrum of 2.

Fig. S11. The ESI-MS spectrum of 3.

Fig. S12. The 1H NMR spectrum of 3.

Fig. S13. The 13C NMR spectrum of 3.

Fig. S14. The phosphorescence spectra of [Ir(ppy)$_2$(pyMe)$_2$]$^+$ in the glycerol-water systems.

Fig. S15. Confocal images of the cells colabeled with 1 and MitoTracker® Red.

Fig. S16. Iridium concentrations determined in lysosome by ICP-MS.

Fig. S17. Photostability experiment of 1 in the live cells.

Fig. S18. Photostability of 1 in the solution.

Fig. S19. The cell viabilities of the cells treated with 1.
Fig. S1. The ESI-MS spectrum of 1.

Fig. S2. The 600 MHz 1H NMR spectrum of 1 in the CD$_3$CN solution.
Fig. S3. The 600 MHz cosy NMR spectrum of 1 in the CD$_3$CN solution.
Fig. S4. The 151 MHz 13C NMR spectrum of 1 in the DMSO-d6 solution.
Fig. S5. The stability of 1 in the cell culture medium (RPMI-1640) (with 2% DMSO) for 72 h via UV-vis spectrophotometer.

Fig. S6. The emission intensity at 479 nm of 10 μM 1 in the absence of (I₀) and in the presence of kinds of biological molecules (I). The wavelength of excitation was at 405 nm.
Fig. S7. The emission intensity at 479 nm of 1 in the pure water or in the 80% glycerol-water system with different pH values. The wavelength of excitation was at 405 nm.

Fig. S8. The ESI-MS spectrum of 2.
Fig. S9. The 400 MHz 1H NMR spectrum of 2 in the DMSO-d$_6$ solution.

Fig. S10. The 101 MHz 13C NMR spectrum of 2 in the DMSO-d$_6$ solution.
Fig. S11. The ESI-MS spectrum of 3.

Fig. S12. The 400 MHz 1H NMR spectrum of 3 in the DMSO-d^6 solution.
Fig. S13. The 151 MHz 13C NMR spectrum of 3 in the DMSO-d$_6$ solution.

Fig. S14. The phosphorescence spectra of 10 µM mononuclear iridium complex [Ir(ppy)$_2$(pyMe)$_2$]$^+$ in the glycerol-water systems; $\lambda_{ex} = 405$ nm.
Fig. S15. Confocal microscopy images of A549 cells colabeled with 1 and MitoTracker® Red (MTR, 500 nM, 30 min); 1: $\lambda_{\text{ex}} = 405 \text{ nm}, \lambda_{\text{em}} = 500 \pm 30 \text{ nm};$ MTR: $\lambda_{\text{ex}} = 563 \text{ nm}, \lambda_{\text{em}} = 710 \pm 30 \text{ nm}.$

Fig. S16. Iridium concentrations determined in lysosome of the A549, Hep-G2 and HL-7702 cells with exposure to the iridium complex (10 μM) for 1 h by ICP-MS.
Fig. S17. Photostability experiments of 1 in the living cells. The images were taken under successive irradiation (0-30 min; 405 nm) and the mean intensities of the images under successive irradiation.

Fig. S18. Photostability of 1 before or after 405 nm irradiation for 30 min in PBS solution.
Fig. S19. The cell viabilities of (a) Hep-G2 and (b) HL-7702 cells treated with 1 for 1 h and 12 h, respectively.