Electronic Supporting Information (ESI):

Lanthanide anthracene complexes: slow magnetic relaxation and

luminescence in Dy^{III}, Er^{III} and Yb^{III} based materials

Qian Zou, Xin-Da Huang, Jing-Cui Liu, Song-Song Bao and Li-Min Zheng*

Table S1. A list of molecular formulas and alternating magnetic properties for compounds that havebeen reported to contain anthracene–based ligands and lanthanide metal salts.

Compounds formula	Charactering	Magnetic properties	- (
(U _{eff} /K)		(<i>U</i> _{eff} /K)	Ref.
[Dy(L ¹) ₂ (NO ₃)(DMF) ₂]	mononuclear	SMM, 23 (1 kOe)	1
[Yb(L¹)₃(Py)]	mononuclear	n.a. ^f	1
${[Nd(L^2)_{1.5}(DMF)_2] \cdot (DMF)}_n$	3D MOF	field-SMM, 22.9 (1 kOe)	2
${[Dy(L^2)_{1.5}(DMF)_2] \cdot (DMF)}_n$	3D MOF	SMM, 52.7 (1 kOe)	2
${[Gd(L^2)_{1.5}(DMF)_2] \cdot (DMF)}_n$	3D MOF	field-SMM, 15.4 (1 kOe)	2
${[Er(L^2)_{1.5}(DMF)_2] \cdot (DMF)}_n$	3D MOF	field-SMM, 13.0 (1 kOe)	2
${[Yb(L^2)_{1.5}(DMF)_2] \cdot (DMF)}_n$	3D MOF	field-SMM, 22.9 (1 kOe)	2
{[Yb(L ²)(NO ₃)(DMF) ₂]·(DMF) _{0.33} } _n	2D MOF	field-SMM, 16.2 (1 kOe)	2
[Dy(hfac) ₃ (L ³)(H ₂ O)] ^a	mononuclear	field-SMM, 13.4 (1 kOe)	3
$[Dy(hfac)_3(L^3)_2]_2 \cdot H_2O$	mononuclear	field-SMM	3
$[Dy_2(\mu_2-L^4)_4(L^4)_2(bpy)_2]$	dinuclear	SMM, 51.2 (0 Oe)	4
$[Dy_2(\mu_2-L^4)_4(L^4)_2(phen)_2]$	dinuclear	SMM, 49.4 (0 Oe)	4
$[Dy_2(\mu_2-L^4)_4(L^4)_2(Me_2phen)_2]$	dinuclear	SMM, 31.6 (0 Oe)	4
[Zn(μ-L')(μ-L ⁴)Dy(NO ₃) ₂]·2CH ₃ CN ^b	dinuclear	SMM, 32.1 (1 kOe)	5
[Zn(μ-L')(μ-L ⁴)Er(NO ₃) ₂]·2CH ₃ CN	dinuclear	n.a.	5
$[Zn(\mu-L')(\mu-L^4)Yb(NO_3)_2]\cdot 2CH_3CN$	dinuclear	n.a.	5
[Zn(μ-L')(μ-L ⁴)Yb(L ⁴)(NO ₃) ₃]·3CH ₃ CN	dinuclear	n.a.	5
[Ni(μ-L')(μ-L ⁴)Dy(L ⁴)(NO ₃) ₂]·3CH ₃ CN	dinuclear	SMM, 10.1 (1 kOe)	6
Dy(L ³)(NO ₃)₃(hmpa)₂ ^c	mononuclear	field-SMM, 20.4 (500 Oe)	7
Dy(L ³) ₃ (NO ₃) ₃	mononuclear	field-SMM, 35.2K (1 kOe)	8
Dy(L ³) ₄ (NO ₃) ₂ (CF ₃ SO ₃)	mononuclear	SMM, 26.0 (500 Oe)	8
${[Dy(L^2)((NH_2)_2-bdc)_{0.5}(DMF)_2]}\cdot DMF \cdot H_2O_n^d$	3D MOF	no SMM	9
[Cp ₂ ErL ⁵] ₂	dinuclear	n.a.	10
{Dy(L ⁴) ₃ } _n	chain	n.a.	11
${Er(L^4)_3}_n$	chain	n.a.	11
${Yb(L^4)_3}_n$	chain	n.a.	11
$[Er_2(L^4)_6(1,10-phenanthroline)_2]$	dinuclear	n.a.	12
[Er ₂ (L ⁴) ₆ (DMF) ₂ (H ₂ O) ₂]	dinuclear	n.a.	13
[Dy(L ⁶) _{1.5} (H ₂ O) ₂ (DMF)]·2DMF	3D MOF	n.a.	14
[Er(hfac) ₃ (PB-L ⁷)] ^e	mononuclear	n.a.	15
[Yb(hfac)₃(PB-L ⁷)]	mononuclear	n.a.	15
	mononucloar	$SMM 40 E (1 kO_2)$	This
	mononuclear		work
	mononucleor	field_SMM 0.8 (1 kOc)	This
	mononuclear		work
	mononuclear	field_SMM 20.3 (750.0e)	This
	mononuclear	100-310101, 20.3 (730 0E)	work

 L^1 = 1,7-di-9-anthracene-1,6-heptadiene-3,5-dione; L^2 = 9,10-anthracenedicarboxylic acid; L^3 = 9-

diethylphosphonomethyl anthracene; $L^4 = 9$ -anthracenecarboxylate; $L^5 = 1,8$ -diethynylanthracene; $L^6 = 9,10$ -diethynylphenyl anthracene; $L^7 =$ anthacenyl group.

a: hfac = hexafluoroacetylacetonated, b: $H_2L'= N,N',N''$ -trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, c: hmpa = hexamethylphosphoramide, d: $(NH_2)_2$ -bdc = 2,5-diaminoterephthalic acid, e: PB = 2-(2-pyridyl)benzimidazole; f: n.a. = not available.

References:

- [1] M. Menelaou, F. Ouharrou, L. Rodríguez, O. Roubeau, S. J. Teat and N. Aliaga-Alcade, *Chem.–Eur. J.*, 2012, **18**, 11545.
- [2] A. J. Calahorro, I. Oyarzabal, B. Fernández, J. M. Seco, T. Tian, D. Fairen-Jimenez and E. Colacio, *Dalton Trans.*, 2016, 45, 591.
- [3] D.-K. Cao, Y.-W. Gu, J.-Q. Feng, Z.-S. Cai and M. D. Ward, *Dalton Trans.*, 2013, **42**, 11436.
- [4] Y.-L. Wang, C.-B. Han, Y.-Q. Zhang, Q.-Y. Liu, C.-M. Liu and S.-G. Yin, *Inorg. Chem.*, 2016, 55, 5578.
- [5] M. A. Palacios, S. Titos-Padilla, J. Ruiz, J. M. Herrera, S. J. A. Pope, E. K. Brechin and E. Colacio, *Inorg. Chem.*, 2014, 53, 1465.
- [6] E. Colacio, J. Ruiz, A. J. Mota, M. A. Palacios, E. Cremades, E. Ruiz, F. J. White, and E. K. Brechin, *Inorg. Chem.*, 2012, **51**, 5857.
- [7] X.-D. Huang, Y. Xu, K. Fan, S.-S. Bao, M. Kurmoo, and L.-M. Zheng, Angew. Chem. Int. Ed., 2018, 57, 8577.
- [8] X.-D. Huang, M. Kurmoo, S.-S. Bao, K. Fan, Y. Xu, Z.-B. Hu and L.-M. Zheng, Chem. Commun., 2018, 54, 3278.
- [9] I. Oyarzabal, B. Fernández, J. peda, S.Gómez-Ruiz, A.J. Calahorro, J. M. Seco and A. Rodríguez-Diéguez, CrystEngComm, 2016, 18, 3055.
- [10] M. Pieper, J.-H. Lamm, B. Neumann, H.-G. Stammler and N. W. Mitzel, Dalton Trans., 2017, 46, 5326.
- [11] V. V. Utochnikova, A. S. Kalyakina, I. S. Bushmarinov, A. A. Vashchenko, L. Marciniak, A. M. Kaczmarek, R. V. Deun, S. Bräse and N. P. Kuzmina, *J. Mater. Chem. C*, 2016, *4*, 9848.
- [12] C.-S. Liu, L.-Q. Guo, L.-F. Yan and J.-J. Wang, Acta Crystallogr., *Sect. C: Cryst. Struct. Commun.*, 2008, **C64**, m292.
- [13] E. Kusrini, R. Adnan, M. I. Saleh, L.-K. Yan and H.-K. Fun, Spectrochim. Acta, Part A, 2009, 72, 884.
- [14] Q.-S. Xia, X.-D. Yu, H.-M. Zhao, S.-P. Wang, H. Wang, Z.-F Guo, and H.-Z Xing, Cryst. Growth Des., 2017, 17, 4189.
- [15] T. Lazarides, M. A. H. Alamiry, H. Adams, S. J. A. Pope, S. Faulkner, J. A. Weinstein and M. D. Ward, *Dalton Trans.*, 2007, 1484.

Dy1-01	2.279(9)	O1W-Dy1-O1A	84.2(3)
Dy1-O1W	2.371(8)	O1W-Dy1-O1WA	149.9(3)
Dy1-02W	2.429(12)	O2W-Dy1-O3W	130.7(5)
Dy1-03W	2.445(12)	O2W-Dy1-O4W	143.6(5)
Dy1-O4W	2.333(14)	O2W-Dy1-O5W	132.2(6)
Dy1-05W	2.387(12)	O2W-Dy1-O1A	80.0(5)
01-Dy1-01W	86.2(3)	O2W-Dy1-O1WA	75.3(5)
01-Dy1-02W	62.4(5)	O3W-Dy1-O4W	78.4(5)
01-Dy1-O3W	83.9(4)	O3W-Dy1-O5W	69.4(4)
01-Dy1-O4W	153.3(4)	O3W-Dy1-O1A	124.8(4)
01-Dy1-05W	81.8(4)	O3W-Dy1-O1WA	139.0(3)
01-Dy1-01A	142.4(4)	O4W-Dy1-O5W	73.4(4)
01-Dy1-01WA	84.2(3)	O4W-Dy1-O1A	63.9(4)
O1W-Dy1-O2W	74.9(5)	O4W-Dy1-O1WA	96.3(4)
O1W-Dy1-O3W	67.6(3)	05W-Dy1-01A	128.2(4)
O1W-Dy1-O4W	104.8(4)	O5W-Dy1-O1WA	70.2(4)
01W-Dy1-05W	136.3(4)		

 Table S2. Selected bond lengths (Å) and bond angles (°) for 1Dy at 123 K.

Symmetry transformations used to generate equivalent atoms: A: 1-x, y, 0.5-z.

Table S3. Continuous Shape Measure (CShM) analyses of dysprosium geometries for **1Dy-3Er** usingthe SHAPE2.1 Software.

Geometry	1Dy	2Gd	3Er
Octagon (D _{8h})	33.845	33.869	34.172
Heptagonal pyramid (C_{7v})	22.626	22.512	22.477
Hexagonal bipyramid (D _{6h})	16.860	16.640	16.692
Cube (O _h)	12.150	12.125	12.080
Square antiprism (D_{4d})	3.712	3.761	3.853
Triangular dodecahedron (D_{2d})	1.485	1.447	1.451
Johnson gyrobifastigium J26 (D _{2d})	12.815	12.822	12.702
Johnson elongated triangular bipyramid J14 (D_{3h})	26.883	26.854	26.926
Biaugmented trigonal prism J50 (C_{2v})	2.635	2.681	2.765
Biaugmented trigonal prism (C _{2v})	2.070	2.075	2.198
Snub diphenoid J84 (D _{2d})	3.366	3.410	3.354
Triakis tetrahedron (T_d)	12.534	12.559	12.453
Elongated trigonal bipyramid (D_{3h})	23.095	23.041	23.142

 Table S4. The parameters of and H-bonding for 1Dy.

D-H···A	d _{D···A} (Å)	D _{H···A} (Å)	Angle _{D-H···A} (°)
O1W ^a -H1WA····Cl2 ^b	3.274	2.530	146.00
O1W ^a -H1WB····Cl1 ^b	3.142	2.570	126.00
O2W ^a -H2WB····O6W ^a	2.370	2.000	105.00
O3W ^a -H3WA····Cl1 ^c	3.131	2.580	123.00
O3W ^a -H3WB····Cl1 ^b	2.901	2.080	163.00
O4W ^a -H4WA····Cl1 ^d	3.098	2.430	136.00
O4W ^a -H4WB····Cl1 ^e	3.346	2.540	156.00
O5W ^a -H5WA····Cl1 ^a	2.945	2.330	130.00
O5W ^a -H5WB····O5W ^d	3.003	2.370	132.00
O6W ^a -H6WB····Cl2 ^a	2.405	1.960	112.00
O1W ^e -H1WB····Cl1 ^a	2.947	2.130	160.00
C11 ^a -H11···· π^{f}	3.291	2.730	118.00

Symmetry transformations used to generate equivalent atoms: (a) x, y, z; (b) x, y, -1+z; (c) x, -y, -0.5+z; (d) 1-x, -y, 1-z; (e) 1-x, y, 0.5-z; (f) 0.5+x, 0.5+y, 0.5-z.

Gd1-01	2.317(10)	O1W-Gd1-O1A	84.0(3)
Gd1-O1W	2.403(10)	O1W-Gd1-O1WA	150.6(3)
Gd1-O2W	2.454(16)	O2W-Gd1-O3W	129.6(6)
Gd1-O3W	2.452(17)	O2W-Gd1-O4W	144.3(6)
Gd1-O4W	2.375(17)	O2W-Gd1-O5W	132.6(8)
Gd1-O5W	2.410(15)	O2W-Gd1-O1A	79.9(5)
01-Gd1-01W	86.7(3)	O2W-Gd1-O1WA	76.1(7)
01-Gd1-O2W	62.6(5)	O3W-Gd1-O4W	78.6(6)
01-Gd1-O3W	83.2(5)	O3W-Gd1-O5W	69.4(5)
01-Gd1-O4W	152.4(5)	O3W-Gd1-O1A	125.1(5)
01-Gd1-O5W	81.3(5)	O3W-Gd1-O1WA	138.9(4)
01-Gd1-01A	142.5(4)	O4W-Gd1-O5W	73.0(5)
O1-Gd1-O1WA	84.0(3)	O4W-Gd1-O1A	64.7(5)
O1W-Gd1-O2W	74.9(7)	O4W-Gd1-O1WA	96.3(4)
01W-Gd1-03W	66.8(4)	05W-Gd1-01A	128.8(5)
O1W-Gd1-O4W	104.6(4)	O5W-Gd1-O1WA	70.1(4)
01W-Gd1-05W	135.6(4)		

Table S5. Selected bond lengths (Å) and bond angles (°) for 2Gd at 150 K.

Symmetry transformations used to generate equivalent atoms: A: 1-x, y, 0.5-z.

Er1-01	2.266(6)	01W-Er1-01A	83.8(2)
Er1-O1W	2.345(6)	O1W-Er1-O1WA	150.3(2)
Er1-O2W	2.406(8)	O2W-Er1-O3W	129.5(4)
Er1-O3W	2.413(11)	O2W-Er1-O4W	144.0(4)
Er1-O4W	2.308(11)	O2W-Er1-O5W	132.2(4)
Er1-O5W	2.360(9)	O2W-Er1-O1A	80.0(3)
01-Er1-01W	86.6(2)	O2W-Er1-O1WA	75.6(4)
01-Er1-02W	62.1(3)	O3W-Er1-O4W	78.7(4)
01-Er1-03W	83.3(3)	O3W-Er1-O5W	70.0(3)
01-Er1-04W	153.4(3)	O3W-Er1-O1A	125.2(3)
01-Er1-05W	82.0(3)	O3W-Er1-O1WA	139.2(3)
01-Er1-01A	142.1(3)	O4W-Er1-O5W	73.6(4)
O1-Er1-O1WA	83.8(2)	O4W-Er1-O1A	64.3(3)
O1W-Er1-O2W	75.1(4)	O4W-Er1-O1WA	97.2(3)
O1W-Er1-O3W	66.7(3)	05W-Er1-01A	128.3(3)
O1W-Er1-O4W	103.7(3)	O5W-Er1-O1WA	69.9(3)
01W-Er1-05W	136.2(3)		

Table S6. Selected bond lengths (Å) and bond angles (°) for 3Er at 150 K.

Symmetry transformations used to generate equivalent atoms: A: 1-x, y, 0.5-z.

Т/К	χ_T / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	ln(τ / s)	α	Residual
1.8	6.60967	0.71329	-2.85968	0.40696	5.337 × 10 ⁻²
2.0	5.81068	0.64774	-3.2871	0.38564	3.868 × 10 ⁻²
2.2	5.28566	0.60533	-3.61048	0.36602	3.803 × 10 ⁻²
2.4	4.75066	0.56588	-4.00089	0.34064	4.239 × 10 ⁻²
2.6	4.37428	0.53519	-4.3377	0.31869	4.873 × 10 ⁻²
2.8	4.0486	0.51181	-4.69465	0.29596	4.633 × 10 ⁻²
3.0	3.76906	0.49627	-5.06339	0.2723	4.323 × 10 ⁻²
3.3	3.4355	0.47125	-5.64593	0.24846	3.244 × 10 ⁻²
3.6	3.16683	0.44247	-6.24945	0.2375	2.247 × 10 ⁻²
3.9	2.94231	0.43695	-6.8536	0.23256	1.474 × 10 ⁻²
4.2	2.7511	0.43872	-7.44675	0.23293	1.11 × 10 ⁻²
4.5	2.59393	0.44906	-8.02309	0.24902	1.042 × 10 ⁻²
4.8	2.44161	0.51067	-8.53106	0.2454	6.41 × 10 ⁻³
5.1	2.30828	0.60108	-8.97282	0.23601	4.11 × 10 ⁻³

Table S7. The fit parameters obtained from analyses of the ac susceptibilities of **1Dy** under 1 kOe bias dc field in the frequency range of 1-1488 Hz.

Т/К	χ_T / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	ln(τ / s)	α	Residual
1.8	0.719063	0.11564	-7.43776	0.13792	9.12789 × 10 ⁻⁴
2.0	0.658529	0.10187	-7.68429	0.13247	6.48348× 10 ⁻⁴
2.2	0.614117	0.09935	-7.85095	0.12232	4.82357× 10 ⁻⁴
2.4	0.563115	0.0865	-8.10928	0.11906	5.35517× 10 ⁻⁴
2.6	0.525134	0.0769	-8.3211	0.12656	4.42807× 10 ⁻⁴
2.8	0.489837	0.06893	-8.53681	0.12799	4.55034× 10 ⁻⁴
3.0	0.459927	0.05722	-8.7805	0.13984	4.25602× 10 ⁻⁴
3.2	0.433313	0.04262	-9.0284	0.15324	3.65557× 10 ⁻⁴
3.4	0.409220	0.02637	-9.2917	0.16551	3.69117× 10 ⁻⁴
3.6	0.387798	1.20968 × 10 ⁻⁷	-9.63811	0.19085	4.64218× 10 ⁻⁴
3.8	0.367601	1.55617 × 10 ⁻⁷	-9.85939	0.19063	3.5289× 10 ⁻⁴
4.0	0.350559	2.38505 × 10 ⁻⁷	-10.1348	0.21233	4.32627× 10 ⁻⁴

Table S8. The fit parameters obtained from analyses of the ac susceptibilities of **4Yb** under 750 Oe bias dc field in the frequency range of 11-1488 Hz.

compound	$\lambda_{ ext{em}}$ / nm	τ ₁ / ns	τ₂/ ns	τ ₃ / ns	$ au_{average}/ns$	χ^2
40	430	1.29	4.30		2.06	1.07
IDy		(46.74 %)	(53.26 %)	-		
204	430	0.41	1.44	4.35	1.20	1.24
ZGđ		(13.03 %)	(67.82 %)	(19.15 %)		
3Er	430	0.37	0.99	4.82	0.76	1.13
		(20.85 %)	(73.61 %)	(5.54 %)		
4Yb	430	0.76	5.77	- 2.19	1 1 1	
		(24.66 %)	(75.34 %)		1.11	

Table S9. The emission lifetimes at room temperature for the solid compound **1Dy-4Yb** excited at374nm.

Figure S1. Experimental (red) and simulated (black) PXRD patterns for compounds **1Dy** (a), **2Gd** (b), **3Er** (c) and **4Yb** (d). The simulated PXRD pattern of **1Dy** was given in (d) for a comparison.

Figure S2. Top: The packing diagrams of **1Dy** with the view along the b-axis. Bottom: The H-bonds interactions between compound **1Dy** with the view along the c axis.

Figure S3. Top: The fragment of the crystal structure of **2Gd.** Bottom: The packing diagram of **2Gd** with the view approximately along the b-axis. For clarity, All hydrogen atoms are omitted.

Figure S4. Top: The fragment of the crystal structure of **3Er.** Bottom: The packing diagram of **3Er** with the view approximately along the b-axis. For clarity, All hydrogen atoms are omitted.

Figure S5. Pawley fit of a powder sample of compound **4Yb** performed using *Topas* 5.0 program. Blue is the measured intensities, red is the calculated intensities, and gray is the difference plot between the measured and calculated intensities (Rwp : 9.7, GOF : 2.0).

Figure S6. Temperature dependence of $\chi_M T$ on cooling in a field of 1 kOe for **2Gd** (a), **3Er** (b) and **4Yb** (c). Inset: Field dependence of the magnetization at 2K for **2Gd** (a) and at depicted temperatures for compound **3Er** (b) and **4Yb** (c). The χ_M^{-1} vs. *T* curve for **2Gd** is also presented (a, inset).

Figure S7. The plots of magnetization *M* versus *H*/*T* at depicited temperatures for compounds **1Dy**, **3Er** and **4Yb**.

Figure S8. Frequency dependence of the in-phase (a) and out-of-phase (b) signals for **1Dy** in the indicated dc fields at 1.8 K. (c) Frequency dependence of the in-phase (χ') ac susceptibilities and (d) Cole-Cole plots for **1Dy**, measured in the temperature range 1.8-5.0 K under 1000 Oe dc field. The solid line represents the best fit using a generalized Debye model.

Figure S9. Frequency dependence of the in-phase (a) and out-of-phase (b) signals for **3Er** in the indicated dc fields at 1.8 K. (c) Frequency dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibilities signals for **3Er**, measured in the temperature range 1.8-5.1 K under 1000 Oe dc field.

Figure S10. Frequency dependence of the in-phase (a) and out-of-phase (b) signals for **4Yb** in the indicated dc fields at 1.8 K. (c) Frequency dependence of the in-phase (χ') ac susceptibilities in the frequency range of 1-1488 Hz for **4Yb**, measured in the temperature range 1.8-6.0 K under 750 Oe dc field. (d) Cole-Cole plots for **4Yb**, measured in the temperature range 1.8-4.0 K under 750 Oe dc field in the frequency range of 11-1488 Hz for **4Yb**. The solid line represents the best fitting.

Figure S11. Thermogravimetric curves of Compounds **1Dy** – **4Yb** measured over a temperature range of 25-500 °C. The molecular formula of the compounds obtained from the weight loss curve are in good agreement with the results of the elemental analysis.