Supporting Information

N-Methylation of ortho-Substituted Aromatic Amines with Methanol Catalyzed by 2-Arylbenzo[d]oxazole NHC-Ir(III) Complexes

Shuang Huang, [a] Xi Hong, [a] He-Zhen Cui, [a] Quan Zhou, [a] Yue-Jian Lin [a] and Xiu-Feng Hou *[a,b]

[a] Department of Chemistry, Fudan University, Shanghai 200433, China
[b] Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China

Table of Contents

1. Characterization data of substrates………………………………………2
2. Control experiments and kinetic experiments…………………………9
3. Deuteration experiments………………………………………………..10
4. NMR spectra of compounds and substrates…………………………….10

Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019
1. Characterization data of substrates

N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (99%) *N*-methylaniline as yellow oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.31 (td, $J = 7.4$, 1.8 Hz, 2H), 6.84 (t, $J = 7.3$ Hz, 1H), 6.71 (d, $J = 7.7$ Hz, 2H), 3.57 (s, 1H), 2.91 (s, 3H) ppm. 13C NMR (101 MHz, CDCl$_3$) δ 149.45 (s), 129.28 (s), 117.28 (s), 112.50 (s), 30.76 (s) ppm. GC-MS (m/z): 107.07 (calc. 107.10).

4-Methoxy-*N*-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (89%) 4-methoxy-*N*-methylaniline as a oil. 1H NMR (400 MHz, CDCl$_3$) δ 6.82 (d, $J = 8.7$ Hz, 2H), 6.60 (d, $J = 8.6$ Hz, 2H), 3.77 (s, 3H), 2.81 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 152.13 (s), 143.75 (s), 114.96 (s), 113.67 (s), 55.89 (s), 31.63 (s). GC-MS (m/z): 137.08 (calc. 137.10).

4-(Methylamino)benzonitrile

Followed the general procedure, purification by column chromatography (PE/EtOAc 10:1) gave product (98%), 4-(methylamino)benzonitrile as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.32 (s, 2H), 6.46 (s, 2H), 4.34 (s, 1H), 2.78 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 152.30 (s), 133.66 (s), 120.63 (s), 111.84 (s), 98.37 (s), 29.95 (s). GC-MS (m/z): 132.07 (calc. 132.02).

3-Methoxy-*N*-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (92%) 3-methoxy-*N*-methylaniline as a oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.12 (t, $J = 8.1$ Hz, 1H), 6.31 (dd, $J = 8.1$, 2.3 Hz, 1H), 6.26 (dd, $J = 8.0$, 2.1 Hz, 1H), 6.19 (t, $J = 2.2$ Hz, 1H), 3.81 (s, 4H), 2.85 (s, 4H). 13C NMR (101 MHz, CDCl$_3$) δ 129.79 (s), 105.58 (s), 102.21 (s), 98.23 (s), 54.96 (s), 30.60 (s), 29.58 (s). GC-MS (m/z): 137.08 (calc. 137.14).
3-Bromo-N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave 89 mg (96%), 3-bromo-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.07 (t, $J = 8.0$ Hz, 1H), 6.87 (d, $J = 7.8$ Hz, 1H), 6.77 (t, $J = 1.9$ Hz, 1H), 6.55 (dd, $J = 8.2$, 1.8 Hz, 1H), 3.80 (s, 1H), 2.83 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 150.50 (s), 130.36 (s), 123.20 (s), 119.74 (s), 114.67 (s), 111.16 (s), 30.42 (s). GC-MS (m/z): 184.98(calc. 184.99).

2-Methoxy-N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (86%) 2-methoxy-N-methylaniline as a oil. 1H NMR (400 MHz, CDCl$_3$) δ 6.95 (t, $J = 7.6$ Hz, 1H), 6.82 (d, $J = 7.4$ Hz, 1H), 6.72 (t, $J = 7.7$ Hz, 1H), 6.66 (d, $J = 7.7$ Hz, 1H), 4.28 (s, 1H), 3.89 (s, 3H), 2.91 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 146.80 (s), 139.29 (s), 121.25 (s), 116.19 (s), 109.18 (d, $J = 8.7$ Hz), 55.28 (s), 30.26 (s). GC-MS (m/z): 137.08 (calc. 137.11).

N,2-dimethylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (73 %), N,2-dimethylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.31 – 7.20 (m, 1H), 7.13 (d, $J = 7.2$ Hz, 1H), 6.75 (t, $J = 7.4$ Hz, 1H), 6.69 (d, $J = 8.0$ Hz, 1H), 2.96 (s, 3H), 2.21 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 147.17 (s), 129.82 (s), 127.11 (s), 121.82 (s), 116.77 (s), 109.05 (s), 30.68 (s), 17.29 (s). GC-MS (m/z): 121.08 (calc. 121.15).

2-Bromo-N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (83 %), 2-bromo-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (dd, $J = 7.9$, 1.4 Hz, 1H), 7.25 (s, 1H), 6.67 (dd, $J = 8.1$, 1.1 Hz, 1H), 6.64 – 6.57 (m, 1H), 4.39 (s, 1H), 2.93 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 145.97 (s), 132.28 (s), 128.56 (s), 117.60 (s), 110.74 (s), 109.62 (s), 30.61 (s). GC-MS (m/z): 184.98(calc. 185.15).
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (78%), 2-iodo-N-methylaniline as a brown oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.67 (dd, $J = 7.8$, 1.4 Hz, 1H), 7.31 – 7.18 (m, 1H), 6.57 (dd, $J = 8.1$, 1.2 Hz, 1H), 6.46 (td, $J = 7.6$, 1.4 Hz, 1H), 4.21 (s, 1H), 2.90 (d, $J = 3.8$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 148.16 (s), 138.86 (s), 129.47 (s), 118.47 (s), 109.99 (s), 30.97 (s). GC-MS (m/z): 232.97 (calc. 233.06).

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (75%), 2-chloro-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.29 (d, $J = 7.2$ Hz, 1H), 7.24 – 7.16 (m, 1H), 6.67 (t, $J = 4.8$ Hz, 3H), 4.37 (s, 1H), 2.92 (d, $J = 4.8$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 145.01 (s), 128.95 (s), 127.84 (s), 119.04 (s), 117.00 (s), 110.61 (s), 30.35 (s). GC-MS (m/z): 141.03 (calc. 141.23).

Followed the general procedure, purification by column chromatography (PE/EtOAc 10:1) gave product (88%) 4-ethoxy-N-methylaniline as a brown oil. 1H NMR (400 MHz, CDCl$_3$) δ 6.84 (dd, $J = 11.0$, 6.6 Hz, 2H), 6.60 (d, $J = 7.8$ Hz, 2H), 3.99 (dt, $J = 11.2$, 4.7 Hz, 2H), 3.29 (s, 1H), 2.81 (d, $J = 3.9$ Hz, 3H), 1.41 (td, $J = 6.9$, 4.7 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 151.36 (s), 143.82 (s), 115.88 (s), 113.66 (s), 64.22 (s), 31.59 (s), 15.09 (s). GC-MS (m/z): 151.09 (calc. 151.11).

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (95%), 4-fluoro-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.01 – 6.87 (m, 2H), 6.56 (dd, $J = 6.8$, 5.1, 3.0 Hz, 2H), 3.40 (dd, $J = 57.2$, 12.0 Hz, 1H), 2.81 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 156.93 (s), 154.60 (s), 145.73 (s), 115.66 (s), 115.44 (s), 113.11 (d, $J = 7.4$ Hz), 31.25 (s). 19F NMR (376 MHz, CDCl$_3$) δ -128.56 (s). GC-MS (m/z): 125.06 (calc. 125.36).
4-Chloro-N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (99%), 4-chloro-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 6.11 (s, 2H), 5.50 (s, 2H), 2.70 (s, 1H), 1.79 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 147.91 (s), 129.01 (s), 121.81 (s), 113.44 (s), 30.79 (s). GC-MS (m/z): 141.03 (calc. 141.23).

4-Bromo-N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (96%), 4-bromo-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.13 (d, $J = 7.9$ Hz, 2H), 6.34 (d, $J = 8.0$ Hz, 2H), 3.59 (s, 1H), 2.65 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 148.34 (s), 131.88 (s), 113.98 (s), 108.76 (s), 30.72 (s). GC-MS (m/z): 184.98(calc. 185.02).

4-Iodo-N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (91%), 4-iodo-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.44 (d, $J = 8.8$ Hz, 2H), 6.39 (d, $J = 8.8$ Hz, 2H), 3.52 (s, 1H), 2.80 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 148.92 (s), 137.76 (s), 129.30 (s), 114.74 (s), 30.67 (s). GC-MS (m/z): 232.97(calc. 232.99).

3-Chloro-N-methylaniline

Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (95%), 3-chloro-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.12 (t, $J = 8.0$ Hz, 1H), 6.70 (dt, $J = 19.9$, 10.0 Hz, 1H), 6.65 – 6.55 (m, 1H), 6.50 (dd, $J = 8.1$, 2.0 Hz, 1H), 3.82 (s, 1H), 2.84 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 150.33 (s), 134.90 (s), 130.02 (s), 116.86 (s), 111.76 (s), 110.73 (s), 30.41 (s). GC-MS (m/z): 141.03 (calc. 141.53).
3-Iodo-N-methylaniline
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (95%), 3-iodo-N-methylaniline as a brown oil.
1H NMR (400 MHz, CDCl$_3$) δ 7.07 (d, J = 6.9 Hz, 1H), 7.01 – 6.88 (m, 2H), 6.63 – 6.55 (m, 1H), 3.75 (s, 1H), 2.82 (s, 3H).
13C NMR (101 MHz, CDCl$_3$) δ 150.41 (s), 130.58 (s), 125.88 (s), 120.69 (s), 111.77 (s), 95.31 (s), 30.44 (s). GC-MS (m/z): 232.97 (calc. 233.03).

N,3-Dimethylaniline
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (98%), N,3-dimethylaniline as a colourless oil.
1H NMR (400 MHz, CDCl$_3$) δ 7.16 (s, 1H), 6.62 (d, J = 7.4 Hz, 1H), 6.50 (d, J = 6.5 Hz, 2H), 3.68 (s, 1H), 2.88 (s, 3H), 2.37 (s, 3H).
13C NMR (101 MHz, CDCl$_3$) δ 149.34 (s), 138.88 (s), 129.00 (s), 118.12 (s), 113.10 (s), 109.56 (s), 30.69 (s), 21.56 (s). GC-MS (m/z): 121.08 (calc. 121.12).

(2-(Methylamino)phenyl)methanol
Followed the general procedure, purification by column chromatography (PE/EtOAc 10:1) gave product (90%), (2-(methylamino)phenyl)methanol as a colourless oil.
1H NMR (400 MHz, CDCl$_3$) δ 7.28 (t, J = 7.7 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.70 (t, J = 7.0 Hz, 2H), 4.65 (s, 2H), 2.89 (d, J = 0.7 Hz, 3H).
13C NMR (101 MHz, CDCl$_3$) δ 148.46 (s), 129.59 (s), 128.84 (s), 124.23 (s), 116.26 (s), 109.99 (s), 64.59 (s), 30.20 (s). GC-MS (m/z): 137.08 (calc. 137.10).

N-Methyl-2-(methylthio)aniline
Followed the general procedure, purification by column chromatography (PE/EtOAc 10:1) gave product (85 %), N-Methyl-2-(methylthio)aniline as a colourless oil.
1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.40 (m, 1H), 7.25 (ddd, J = 8.1, 7.4, 1.6 Hz, 1H), 6.69 (td, J = 7.5, 1.3 Hz, 1H), 6.64 (dd, J = 8.1, 1.0 Hz, 1H), 2.93 (s, 3H), 2.35 (s, 3H).
13C NMR (101 MHz, CDCl$_3$) δ 149.13 (s), 133.64 (s), 129.32 (s), 119.55 (s), 116.72 (s), 109.39 (s), 30.48 (s), 17.88 (s). GC-MS (m/z): 153.06 (calc. 153.08).
4-Bromo-N,2-dimethylaniline
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (77 %), 4-bromo-N,2-dimethylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.29 – 7.23 (m, 1H), 7.18 (d, $J = 2.3$ Hz, 1H), 6.49 (d, $J = 8.6$ Hz, 1H), 2.89 (s, 3H), 2.12 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 146.14 (s), 132.15 (s), 129.56 (s), 123.87 (s), 110.46 (s), 108.31 (s), 30.64 (s), 17.04 (s). GC-MS (m/z): 198.99 (calc. 199.01).

2-Bromo-N,4-dimethylaniline
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (78 %), 2-bromo-N,4-dimethylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.30 (t, $J = 4.1$ Hz, 1H), 7.08 – 7.03 (m, 1H), 6.61 – 6.56 (m, 1H), 2.91 (s, 3H), 2.27 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 143.67 (s), 132.53 (s), 128.93 (s), 127.02 (s), 110.65 (s), 109.41 (s), 30.73 (s), 19.89 (s). GC-MS (m/z): 198.99 (calc. 199.04).

4-Bromo-2-iodo-N-methylaniline
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (76 %), 4-bromo-2-iodo-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.76 (d, $J = 2.0$ Hz, 1H), 7.39 – 7.31 (m, 1H), 6.40 (t, $J = 19.1$ Hz, 1H), 4.24 (s, 1H), 2.88 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 147.23 (s), 140.12 (s), 132.00 (s), 110.71 (s), 108.34 (s), 84.80 (s), 30.93 (s). GC-MS (m/z): 310.88 (calc. 310.95).

2-Chloro-4-fluoro-N-methylaniline
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (83 %), 2-chloro-4-fluoro-N-methylaniline as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.21 – 7.12 (m, 1H), 6.39 – 6.28 (m, 2H), 4.45 (s, 1H), 2.89 (d, $J = 5.1$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 129.49 (s), 129.49 (s), 103.26 (s), 103.03 (s), 98.04 (s), 97.76 (s), 30.22 (s). 19F NMR (376 MHz, CDCl$_3$) δ -113.52 – -113.79 (m). GC-MS (m/z): 159.02 (calc. 159.11).
N-Methylquinolin-8-amine
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (92 %), N-methylquinolin-8-amine as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.73 (dd, $J = 4.1, 1.6$ Hz, 1H), 8.08 (dd, $J = 8.3, 1.6$ Hz, 1H), 7.44 (d, $J = 8.0$ Hz, 1H), 7.42 – 7.37 (m, 2H), 7.07 (d, $J = 8.2$ Hz, 1H), 6.68 (d, $J = 7.6$ Hz, 1H), 6.16 (s, 1H), 3.07 (s, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 146.81 (s), 135.99 (s), 127.86 (s), 121.38 (s), 113.69 (s), 104.13 (s), 30.07 (s). GC-MS (m/z): 158.08 (calc. 158.15).

N-Methylquinolin-5-amine
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (89 %), N-methylquinolin-5-amine as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 8.79 (s, 1H), 8.07 (d, $J = 7.9$ Hz, 1H), 7.52 (t, $J = 7.6$ Hz, 1H), 7.42 (d, $J = 7.6$ Hz, 1H), 7.21 (d, $J = 18.1$ Hz, 1H), 6.55 (d, $J = 6.9$ Hz, 1H), 4.43 (s, 1H), 2.94 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 149.91 (s), 144.71 (s), 130.46 (s), 128.64 (s), 119.27 (s), 118.38 (s), 104.13 (s), 30.98 (s). GC-MS (m/z): 158.08 (calc. 158.14).

N-methylnaphthalen-1-amine
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (82 %), N-methylnaphthalen-1-amine as a colourless oil. 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (s, 2H), 7.45 – 7.22 (m, 3H), 7.17 (s, 1H), 6.53 (s, 1H), 4.43 (d, $J = 67.7$ Hz, 1H), 2.93 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 144.57 (s), 134.28 (s), 128.67 (s), 126.69 (s), 125.70 (s), 124.68 (s), 123.51 (s), 119.80 (s), 117.33 (s), 103.81 (s), 31.02 (s). GC-MS (m/z): 157.08 (calc. 157.12).

N,4-dimethylbenzenesulfonamide
Followed the general procedure, purification by column chromatography (PE/EtOAc 50:1) gave product (94 %), N,4-dimethylbenzenesulfonamide as white solid. 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (d, $J = 7.6$ Hz, 2H), 7.24 (d, $J = 7.6$ Hz, 2H), 5.17 (s, 1H), 2.53 (d, $J = 4.2$ Hz, 3H), 2.35 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 143.46 (s), 135.75 (s), 129.72 (s), 127.25 (s), 29.22 (s), 21.47 (s). GC-MS (m/z): 185.05 (calc. 185.08).
2. Control experiments and kinetic experiments

2.1 Control experiments

Reaction under optimized conditions

A mixture of 2-bromoaniline (42.5 mg, 0.25 mmol), 4-bromoaniline (42.5 mg, 0.25 mmol), 7 (0.5 mol%) KO
Bu (56 mg, 1.0 equiv.), methanol (1 mL), in a 15 mL pressure tube with magnetic bar was stirred at 130 °C for 12 h. After cooling to the room temperature, the solvents were removed under vacuum, and the yields were determined by 1H NMR with 1,3,5-trimethoxybenzene as the internal standard.

![Chemical structure]

2.2 Kinetic experiments

Reaction under optimized conditions

A mixture of 2-bromoaniline (85 mg, 0.5 mmol), 5, and 6, or 7 (0.5 mol%) as catalyst, respectively, KO
Bu (56 mg, 1.0 equiv.), methanol (1 mL), in a 15 mL pressure tube with magnetic bar was stirred at 130 °C. After specific time, the reaction mixture was cooled to room temperature. The solvents were removed under vacuum, and the yields were determined by 1H NMR with 1,3,5-trimethoxybenzene as the internal standard.

The results are as following table.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time(h)</th>
<th>Yield5(%)</th>
<th>Yield6(%)</th>
<th>Yield7(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0.33</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
<td>2</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>10</td>
<td>19</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>15</td>
<td>24</td>
<td>52</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>18</td>
<td>30</td>
<td>65</td>
</tr>
</tbody>
</table>
3. Deuteration experiments.

A mixture of 2-bromoaniline (85mg, 0.5 mmol), 7 (4.2 mg, 0.5 mol%) KOtBu (56 mg, 1.0 equiv.), CD3OD (1 mL), in a 15 mL pressure tube with magnetic bar was stirred at 130 °C for 12 h. The reaction mixture was cooled to room temperature. The solvents were removed under vacuum, and the yields were determined by 1H NMR with 1,3,5-trimethoxybenzene as the internal standard.

4. NMR spectra of compounds and substrates
^{13}C

^1H
[Chemical structures and NMR spectra]