Electrochemical investigation of uncapped AgBiS$_2$ (Schapbachite) synthesized by *in situ* melts of xanthate precursors

Malik Dilshad Khan,a* Muhammad Aamir,b Manzar Sohail,c Sanket Bhyate,d Megan Hyatt,e Ram K. Gupta,d Muhammad Sher,f Neerish Revaprasadu,a*

aDepartment of Chemistry, University of Zululand, Private Bag X1001, Kwa-Dlangezwa, 3880, South Africa.

bMaterials Lab, Department of Chemistry, Mirpur University of Science and Technology, Allama Iqbal Road, Mirpur AJK, Pakistan.

cCentre of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.

dDepartment of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA.

eLabette County High School, Altamont, KS 67330, USA.

fDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan.

*E-mail: RevaprasaduN@unizulu.ac.za

Supplementary Data
Figure S1. TGA and heat flow curves for (a) $(O$-ethyldithiocarbonato)silver(I) and (b) $tris(O$-ethyldithiocarbonato)bismuth(III) complex.

Figure S2 (i) p-XRD pattern of monoclinic Ag_2S (acanthite, ICDD # 00-024-0715) synthesized by pyrolysis of $(O$-ethyldithiocarbonato)silver(I) complex at (a) 200 °C, (b) 250 °C and (c) 300 °C. (ii) p-XRD pattern of orthorhombic Bi_2S_3 (bismuthinite, ICDD# 01-075-1306) synthesized by pyrolysis of $tris(O$-ethyldithiocarbonato)bismuth(III) complex at (a) 200 °C, (b) 250 °C and (c) 300 °C.
Figure S3. p-XRD of (a) silver ethyl xanthate and (b) bismuth ethyl xanthate, complexes.

Figure S4. p-XRD pattern of cubic AgBiS$_2$ (schapbachite) synthesized at (a) 200 °C, (b) 250 °C and (c) 300 °C by melt method.
Figure S5. p-XRD pattern of AgBiS$_2$ synthesized at 150 °C, where (*) represent the peaks for matildite phase and (#) represent schapbachite phase.

Figure S6. EDX spectrum of AgBiS$_2$ synthesized at 250 °C.
Figure S7. Raman spectrum of AgBiS$_2$ synthesized at 250 °C.

Figure S8. UV-Vis-NIR spectrum of AgBiS$_2$ and (inset) shows estimated band gap by Tauc plot.
Figure S9. (a) Z_{real} vs. Z_{img} plot and (b) $|Z|$ vs. frequency plot for AgBiS$_2$.
Table S1. Comparison of specific capacitance of other reported oxide and sulfide-based materials.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Specific capacitance (F/g)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_2$S$_3$-Graphene composite</td>
<td>290</td>
<td>1</td>
</tr>
<tr>
<td>Microwave-assisted CoS</td>
<td>224</td>
<td>2</td>
</tr>
<tr>
<td>CoS</td>
<td>~435</td>
<td>3</td>
</tr>
<tr>
<td>CuCo$_2$O$_4$</td>
<td>809</td>
<td>4</td>
</tr>
<tr>
<td>CuCo$_2$S$_4$</td>
<td>443</td>
<td>5</td>
</tr>
<tr>
<td>NiCo$_2$O$_4$ films on ITO</td>
<td>490</td>
<td>6</td>
</tr>
<tr>
<td>NiCo$_2$O$_4$ coral-like porous crystals</td>
<td>217</td>
<td>7</td>
</tr>
<tr>
<td>NiCo$_2$S$_4$</td>
<td>800</td>
<td>8</td>
</tr>
<tr>
<td>NiCo$_2$S$_4$/Fe$_2$O$_3$</td>
<td>342</td>
<td>9</td>
</tr>
<tr>
<td>AgBiS$_2$</td>
<td>440</td>
<td>This work</td>
</tr>
</tbody>
</table>

1. Reference 1
2. Reference 2
3. Reference 3
4. Reference 4
5. Reference 5
6. Reference 6
7. Reference 7
8. Reference 8
9. Reference 9

