Dinuclear Lanthanide Complexes supported by a hybrid Salicylaldiminato/Calix[4]arene-Ligand: Synthesis, Structure, Magnetic and Luminescence Properties of (HNEt$_3$)[Ln$_2$(HL)(L)] (Ln = SmIII, EuIII, GdIII, TbIII)

Steve Ullmann,a Peter Hahn,a Laura Blömer,a Anne Mehnert,a Christian Laube,a Bernd Abel,b,c and Berthold Kerstinga*

a Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany, E-mail: b.kersting@uni-leipzig.de Fax: +49(0)341-97-36199

b Leibniz Institute for Surface Engineering (IOM), Department Functional Surfaces, D-04318 Leipzig, Germany

c Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, D-04103 Leipzig, Germany

Supporting Information

Content

1. ORTEP PLOT for HNEt$_3$[Sm$_2$(HL)(L)(MeCN)$_2$]·2.5MeCN (4·2.5MeCN).
3. Analytical data for 3.
4. Analytical data for H$_4$L.
5. Analytical data for Sm complex 4.
9. Spectrophotometric titrations / Determination of Stability Constants
10. Equations S1 and S2
11. Curie-Weiss plot for 6
1) ORTEP PLOT for HNEt₃[Sm₂(HL)(L)(MeCN)₂]·2.5MeCN (4·2.5MeCN).

Fig. S1. Single-crystal X-ray diffraction structure of the [Sm₂(HL)(L)(MeCN)₂]⁻ anion in crystals of (HNEt₃)[Sm₂(HL)(L)(MeCN)₂]·2.5MeCN (4·2.5MeCN). The HNEt₃⁺ ion and some MeCN solvate molecules are omitted for clarity. Thermal ellipsoids are shown at the 30% probability level.

2. Analytical data for 2

Fig. S2. ¹H NMR spectrum of 2 in CD₂Cl₂ at ambient temperature.
Fig. S3. APT spectrum of 2 in CD$_2$Cl$_2$ at ambient temperature.

Fig. S4. ATR infrared spectrum of 2.
Fig. S5. ESI mass spectrum of 2.

3. Analytical data for 3

Fig. S6. 1H NMR spectrum of 3 in DMSO-d$_6$ at ambient temperature.
Fig. S7. APT spectrum of 3 in DMSO-d$_6$ at ambient temperature.

Fig. S8. 1H,1H NOESY spectrum of 3 in DMSO-d$_6$ at ambient temperature.
Fig. S9. 1H,13C HSQC spectrum of 3 in DMSO-d$_6$ at ambient temperature.

Fig. S10. 1H,13C HMBC spectrum of 3 in DMSO-d$_6$ at ambient temperature.
Fig. S11. ATR infrared spectrum of 3.

Fig. S12. ESI mass spectrum of 3.
4. Analytical data for H₄L

Fig. S13. ¹H NMR spectrum of H₄L in CD₂Cl₂ at ambient temperature.

Fig. S14. APT spectrum of H₄L in CD₂Cl₂ at ambient temperature.
Fig. S15. ATR infrared spectrum of H_4L.

Fig. S16. ESI mass spectrum of H_4L.
Fig. S17. UV/vis spectrum of H_4L in MeCN, $[\text{H}_4\text{L}] = 5 \cdot 10^{-5}$ M.

5. Analytical data for (NHEt$_3$)[Sm$_2$(L)(HL)] (4)

Fig. S18. ATR infrared spectrum of 4.
Fig. S19. ESI mass spectrum of 4.

Fig. S20. ESI mass spectrum of 4.

6. Analytical data for (NHEt$_3$)[Eu$_2$(L)(HL)] (5)
Fig. S21. ATR infrared spectrum of 5.

Fig. S22. ESI mass spectrum of 5.
Fig. S23. ESI mass spectrum of 5.

7. Analytical data for \((\text{HNEt}_3)[\text{Gd}_2(\text{L})(\text{HL})])\) (6)

Fig. S24. ATR infrared spectrum of 6.
Fig. S25. ESI mass spectrum of 6.

Fig. S26. ESI mass spectrum of 6.

8. Analytical data for (HNEt$_3$)$_2$[Tb$_2$(L)(HL)] (7)
Fig. S27. FT infrared spectrum of 7.

Fig. S28. ESI mass spectrum of 7.

9. Spectrophotometric titrations / Determination of Stability Constants
Batch data for (NHEt$_3$)[Sm$_2$(L)(HL)] (4)

HypeSpec refinement output

Project title: Titration of H$_4$L by Sm(NO$_3$)$_3$·6H$_2$O
Converged in 1 iteration with sigma = 7.4369E-03

<table>
<thead>
<tr>
<th>standard</th>
<th>Log beta</th>
<th>value</th>
<th>deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td></td>
<td>6.0809</td>
<td>0.0369</td>
</tr>
</tbody>
</table>

Fig. S29. Titration isotherm extracted at 345 nm (left panel), spectrum corresponding to the 6th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of H$_4$L (red), Sm(NO$_3$)$_3$ (green) and the 1:1 complex (blue) to the total absorbance.

Batch data for (NHEt$_3$)[Eu$_2$(L)(HL)] (5)
Fig. S30. Spectrophotometric titration of H_4L with Eu(NO$_3$)$_3$·6H$_2$O in CH$_3$CN (10$^{-5}$ M concentration) at constant ionic strength (10$^{-2}$ M N$^+$Bu$_4$PF$_6$, T = 298 K) in the presence of 5·10$^{-4}$ M NEt$_3$. The green curve refers to a final molar ratio of M/H_4L = 5.0. The inset shows the evolution of selected absorbance values versus the [EuIII]/[H_4L] molar ratio.

HypeSpec refinement output

Project title: Titration of H$_4$L by Eu(NO$_3$)$_3$·6H$_2$O
Converged in 1 iteration with sigma = 0.010570

<table>
<thead>
<tr>
<th>Log beta value</th>
<th>deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>6.2137</td>
</tr>
</tbody>
</table>
Fig. S31. Titration isotherm extracted at 345 nm (left panel), spectrum corresponding to the 10th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of \(\text{H}_4\text{L} \) (red), \(\text{Eu(NO}_3)_3 \) (green) and the 1:1 complex (blue) to the total absorbance.

Batch data for \((\text{NHEt}_3)[\text{Gd}_2(\text{L})(\text{HL})])\) (6)

Fig. S32. Spectrophotometric titration of \(\text{H}_4\text{L} \) with \(\text{Gd(NO}_3)_3 \cdot \text{6H}_2\text{O} \) in \(\text{CH}_3\text{CN} \) (10\(^{-5}\) M concentration) at constant ionic strength (10\(^{-2}\) M \(\text{N}^+\text{Bu}_4\text{PF}_6 \), \(T = 298 \text{ K} \)) in the presence of
5·10^{-4} \text{ M NEt}_3. \text{ The green curve refers to a final molar ratio of } M/H_4L = 5.0. \text{ The inset shows the evolution of selected absorbance values versus the } [\text{Gd}^{III}]/[H_4L] \text{ molar ratio.}

HypeSpec refinement output

Project title: Titration of H_4L by Gd(NO$_3$)$_3$·6H$_2$O
Converged in 1 iteration with sigma = 9.3291E-03

<table>
<thead>
<tr>
<th>Log beta</th>
<th>value</th>
<th>deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>5.8101</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Fig. S33. Titration isotherm extracted at 345 nm (left panel), spectrum corresponding to the 10th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of H_4L (red), Gd(NO$_3$)$_3$ (green) and the 1:1 complex (blue) to the total absorbance.
Batch data for (NHEt$_3$)$_3$[Tb$_2$(L)(HL)] (7)

Fig. S34. Spectrophotometric titration of H$_4$L with Tb(NO$_3$)$_3$·6H$_2$O in CH$_3$CN (10$^{-5}$ M concentration) at constant ionic strength (10$^{-2}$ M NoBu$_4$PF$_6$, $T = 298$ K) in the presence of 5·10$^{-4}$ M NEt$_3$. The green curve refers to a final molar ratio of M/H$_4$L = 5.0. The inset shows the evolution of selected absorbance values versus the [TbIII]/[H$_4$L] molar ratio.

HypeSpec refinement output

Project title: Titration of H$_4$L by Tb(NO$_3$)$_3$·6H$_2$O
Converged in 1 iteration with sigma = 9.0417E-03

<table>
<thead>
<tr>
<th>Log beta value</th>
<th>deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB 6.3426</td>
<td>0.0604</td>
</tr>
</tbody>
</table>
Fig. S35. Titration isotherm extracted at 345 nm (left panel), spectrum corresponding to the 6th data point (right panel), and plot of residuals (bottom panels). Observed absorbance values are plotted as blue diamonds and the calculated ones as red crosses. The solid lines in the right panel show the calculated contribution of H₄L (red), Tb(NO₃)₃ (green) and the 1:1 complex (blue) to the total absorbance.

Eq. S1. Expression used for analysis of the temperature dependence of $\chi_M T$ for the dinuclear Sm compound 4.¹

$$\chi_M T = \frac{N_e \mu_B^2}{3k_B \chi} (2.143 + 7.347 + (42.92x + 1.64) e^{-7x/2} + (283.7x - 0.6571)e^{-8x} + (620.6x - 1.94)e^{-27x/2} + (1122x - 2.835)e^{-20x} + (1813x - 3.556)e^{-55x/2}) / (3 + 4e^{-7x/2} + 5e^{-8x} + 6e^{-27x/2} + 7e^{-20x} + 8e^{-55x/2})$$ (S1)

$$x = 1/k_B T$$

Eq. S2: Expression used for analysis of the temperature dependence of $\chi_M T$ for the dinuclear Eu compound 5.

$$\chi_M T = \frac{N_e \mu_B^2}{3k_B \chi} (24 + (27x/2 - 3/2)e^{-x} + (135x/2 - 5/2)e^{-3x} + (189x - 7/2)e^{-6x} + (405x - 9/2)e^{-10x} + (1485x/2 - 11/2)e^{-15x} + (2457x/2 - 13/2)e^{-21x}) / (1 + 3e^{-x} + 5e^{-3x} + 7e^{-6x} + 9e^{-10x} + 11e^{-15x} + 13e^{-21x})$$ (S2)
Fig. S36. Temperature dependence of the inverse molar susceptibility (Curie-Weiss plot) of 6. The solid line corresponds to the best fit of the experimental data.

Fig. S37. Temperature dependence of the inverse molar susceptibility (Curie-Weiss plot) of 7. The solid line corresponds to the best fit of the experimental data.
Fig. S38. Emission profile for 4%wt (HNET$_3$)$_2$$\text{Gd}_2(\text{HL})(\text{L})$] in polycarbonate matrix at 77 K. Pink: 100 μs delay, dark cyan: 650 μs delay. The excitation wavelength is 285 nm.