Supporting Information

A nuclear permeable Ru(II)-based photoactivated chemotherapeutic agent towards a series of cancer cells: in vitro and in vivo studies

Na Tiana,b, Yang Fenga,b, Weize Suna,b, Jian Lua,b, Songsong Luc, Yishan Yaoc*, Chao Lic, Xuesong Wanga,b,* and Qianxiong Zhoua,*

a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
c Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
*E-mail addresses: spray_yao123456@hotmail.com (Y. S. Yao), xswang@mail.ipc.ac.cn (X. S. Wang), zhouqianxiong@mail.ipc.ac.cn (Q. X. Zhou)
Fig. S1 a-d: absorption spectra changes of 1, 2, 3 and 4(30μM) in H₂O upon irradiation (470nm)

Fig. S2 a-d: absorbance changes at 490 nm for 1, 495 nm for 2, 500 nm for 3, 530 nm for 4 with different irradiation times.
Fig. S3 1H NMR spectra changes of 1 in Ar-saturated D$_2$O: (a) before irradiation, (b) irradiation for 5 min (λ_{irr}=470 nm). Two new peaks appeared at 9.56 ppm and 9.85 ppm, which was consistent with previous reports. The H labeled with \star was assigned to bis-aquated complex, and mono-aquated complex was labeled by \Box.

Fig. S4 1H NMR spectra changes of 2 in Ar-saturated D$_2$O: (a) before irradiation, (b) irradiation for 5 min (λ_{irr}=470 nm). Similar with complex 1, two new peaks were assigned to bis-aquated (\star) and mono-aquated (\Box) complex, respectively.

Fig. S5 1H NMR spectra changes of 3 in Ar-saturated D$_2$O: (a) before irradiation, (b) irradiation for 5 min (λ_{irr}=470 nm). Similar with complex 1, two new peaks were assigned to bis-aquated (\star) and mono-aquated (\Box) complex, respectively.
Fig. S6 1H NMR spectra changes of 4 in Ar-saturated D$_2$O: (a) before irradiation, (b) irradiation for 5 min (λ_{irr}=470 nm). Only one new mono-aquated peak was observed (labeled by ■), which was also consistent with its relatively low photo-induced ligand dissociation quantum yield.
Fig. S7 HR ESI-MS spectra of 1 before (top) and after 470 nm light irradiation (bottom) in CH$_3$CN.
Fig. S8 HR ESI-MS spectra of 2 before (top) and after 470 nm light irradiation (bottom) in CH$_3$CN.
Fig. S9 HR ESI-MS spectra of 3 before (top) and after 470 nm light irradiation (bottom) in CH$_3$CN.
Fig. S10 HR ESI-MS spectra of 4 before (top) and after 470 nm light irradiation (bottom) in CH₃CN.

Fig. S11 TEM images of SKOV-3 cells incubated with control (a), 1(b), 2(c), 3 (d) and stained with osmium tetroxide, (The white arrows indicated the accumulated Ru complex, n=nucleus, nu=nucleolus, m=mitochondria).
Fig. S12 The percentage of apoptotic SKOV-3 cells analyzed by flow cytometry. (1) Dark control, with no complex added; (2-4) SKOV-3 cells incubated with complex 1-3 (100nM) for 4 h, respectively, cell medium discarded and added with fresh medium, then irradiated for 0.5 h (470nm LED, 22.5mW/cm²), and incubated for more 10 h in the dark.

![Flow Cytometry Images](image)

Fig. S13 Solid tumors extracted from mice treated after 12 days.

![Tumor Images](image)

Fig. S14 H&E staining images of important organs of different groups: PBS+light, Ru+Light, Ru+dark groups after 12 days treatment.
Fig. S15 Partial MTT assays of different cells. (a) SKOV-3 Cell viabilities treated with complex 4; (b) A549 and Hela cell viabilities treated with complex 4; (c) A549 DDP and SKOV-3 DDP cells viabilities treated with complex 4; (d) Cell viabilities treated with complex 3 upon irradiation for 30 min using 470 nm LED (22.5 mW/cm²).

Fig. S16 MTT assays of normal L-02 cells. Cells treated with complex 4 upon irradiation for 30 min using 470 nm LED (22.5 mW/cm²) or in the dark.
Fig. S17 MTT assays of SKOV-3 cells under hypoxia condition. Cells treated with complex 4 upon irradiation for 30 min using 470 nm LED (22.5 mW/cm²) or in the dark.

Fig. S18 MTT assays of 4T1 cells. Cells treated with complex 4 upon irradiation for 30 min using 470 nm LED (22.5 mW/cm²) or in the dark.

Fig. S19 Caspase levels of SKOV-3 cells relative to the control.
Fig. S20 HPLC of 1.

Fig. S21 HPLC of 2.

Fig. S22 HPLC of 3.
Fig. S23 HPLC of 4.